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1. INTRODUCTION

The purpose of the kinetic theory of gases is to
explain the irreversible phenomena which are observed when-
ever a gas 1s not in a state of equilibrium,

An isolated system is said to be in equilibrium when
its macroscopic parameters are constsnt in time., Furthermore,
if the system is not rotating and is free from externsal
forces, the density n, the streaming velocity u and the tem-
perature T (the macroscopic parameters) of the gas are uni-
form. If a gas is not in equilibrium, fluxes will form with-
in the gas with the effect of establishing, very quickly,
uniformity in the macroscopic parameters. 1In fact, after a
time 2 , Z’zS"%z'lO.g seconds, (t, is the ratio of the mean
free path and some mean molecular speed vr), the irreversible
phenomena cause the system to relax toward a state of local
equilibrium characterized by a set of local macroscopic param-
eters (n,u,T) and by a velocity distribution function £
r® ( y,r,t) of "Maxwellian form"

o 3 -(m/2kT)(v-u)?

£y"= n(m/2wkT)? e 1.1
defined such that £ dr dv gives the average number of mole-
cules that can be found in a unit volume dr with velocities
in the range v, v+dv during a time interval t, t+§t with
St»‘R . In Eq. (1.1) the local macroscopic parameters are

functions of position and time. The time dependence of



n, u and T is secular in the sense that on the T, time scale
these functions are constant, theilr change occurring only on

the macroscopic time scale. By definition

n = [ay 19 = [ay £& 1.2
nu = av v £ = Jay v 1§’ 1.3
> z >

It is easy to verify that r&’ as defined in Eq. (1.1) satis-
fies these equations.

By a macroscopic parameter is meant any measurable
property of the system whose value is averaged over a macro-
scopically small time interval 7, but large enough microscop-
ically not to be sensitive to the size of the interval chosen,
An example will clarify this last statement.

A Pitot tube (1) immersed into a moving fluid will
record the time éveraged of the force exerted by the fluid on
the surface of the tube normal t» the direction of the fluid
motion. If this area would be of moleculaf size, and the
time lag of the apparatus nonexistent, a fluctuation of the
measured pressure would be observed., The pressure in this
case would cease to be a macroscopic parameter in the sense
a macroscopic parameter is used, Furthermore, if we let o

T e Llea Al et 4+ 1 3
o€ tnc significant length of 2 region

of anace in a gas. small
enough macroscopically, to be in a state of local equilibrium,

then v% =¢ and £, ¢ ,the mean free path of a molecule. This
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will imply that if a molecule is in the region at tiﬁe t=0,

at t=% it will still be in the region since it had not enough
time to escape. Using this same argument we can reach the
important conclusion that n, u and T are macroscopic param-
eters because they correspond to the average of collisionally
conserved quantities. In fact, when two molecules of a dilute
gas collide, their mass, momentum and kinetic energy are con-
served, Therefore, the averapge amount of mass, momentum and
kinetic energy contained in the region dr, during a time inter-
val & >Z, s but macroscopically very small, will stay unchanged
after the collisions that in time §t have occurred in dr. It
takes longer than time Tv for n, u and T to chﬁnge in a small
region. Usually & 1is of the order 107 seconds. The time
needed by a macroscopic parameter to change, is of the order
of 10—ssec.

The above remark suggests the existence of another relax-
ation time ‘I'C;‘:L/(}s:a’n‘)"3 sec.,L is a macroscopic length and Cs
the sound velocity. During this stage, the hydrodynamic stage,
of the relaxation of the system toward a true equilibrium state,
the time evolution of the system is determined by the rate of
change of n, u and T as given by the three hydrodynamic equa-
tions. This set of equations is a direct consequence of the
equations governing the conservation of mass, momentum and

e e e ~em 3 2L
ClICI'KYyy il 4D

) = “V. 105
7‘5? P2
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B

where P =nm 1s the mass density; U = Ez +E is the total energy
~ 2
per unit mass, E is the internal energy per unit mass defined

-V'?EE'- Vog_ 1‘6

- V,fgﬁ - V_’th - V.g 1.7

in section 2.3; 9 and g are the heat and pressure tensors,
Macroscopically the hydrodynamic equations can be interpreted
as saying that in a fixed volume element mass, momentum and
energy change in time because of streaming of fluid across dS,
the differential element of surface area of the fixed volume,

and because of the existence of gradients in VT and Vu.

These gradients cause the fluxes of momentum &.P and thermal
energy €.q across dS given in Egs., (1.6, 1.7); € is a unit

vector normal to d4S., The last r.h.s. term of Eq. (1.7) con-
tains the change of total energy in the volume element due to
the work done by the forces P (viscous and hydrostatic forces)
acting on dS. Using the continuity equation, we can eliminate
the convective term in Eq. (1.6). In this case Eq. (1.6)
reduces simply to a statement of Newton's second law for the
fluid. Similarly Lgs. (1.5, 1.6) can be used to eliminate the
time derivatives of n and u from Eq, (1.7). In this way, we
obtain an equation for ﬁ‘from Egq., (1.7). For an ideal fluid
(a fluid for which P=pU, q=0 where p is the hydrostatic pres-
surc) Egs. (1.5, 1.4, 1.7) are known as Euler's equations.
These equations are discussed in section 2.3.

Finally, after a time of the order of T,, the dissipa-



tive fluxes will cause the gradients to disappear and the sys-
tem reaches a trus state of equilibrium with £® =f&. defined
as in Eq. (1.1) but with n=n(r), T and u=u, +woxr uniform
everywhere and constantvin time. u o and Wo are some constant
linear and angular velocities.

The fluxes g and P (like n, u and T) are molecular
averages as we can see from the definitions given in sections
3.3 and 3.4, in which g and P are given in terms of £™ and
£, However, for the dilute gas case q and P can be calcu-
lated from £® only. In 1872 Boltzmann (2) published his
famous integrodifferential equation for £, the one particle
velocity distribution function. This equation was intui-
tively derived using as a model a dilute gas composed of
structureless molecules undergoing only binary collisions.
Maxwell solved Boltzmann's equation for a gas whose mole-

cules are point centers of force proportional to ™

s Where
r is the internuclear distance, but soon he realized from
studies of the temperature dependence of the coefficient of
viscosity, that his model was incorrect (3). Efforts to solve
the Boltzmann equation for gases composed of molecules obey-
ing more realistic potentials were in vain. Even Boltzmann
had doubts on the possibility of obtaining numerical results
for transport coefficients from his equation.

Chiapman in 1914 2and knskog in 1917 independently
solved Boltzmann's equation for a simple gas whose molecules

possessed only translatory kinetic energy. Chapman and Enskog



in Ref.(3) approached the problem in the following way: if
the whole gas, is assumed to be divided into small regions
microscopically large, then as, previously discussed, each
of these regions can be assumed to be nearly in a state of
local equilibrium characterized by the local temperature
T(r,t), local density n(r,t) and local mean velocity ulr,t).
The distribution of velocities £™ is then expressible as a

functional of n, T and u and given by
£ =103 (1+9) 1.8

where & 1s the distortion to the local equilibrium distri-
bution of velocities, £ , due to the existence of gradients
in temperature, density and streaming velocity between this
region and the surrounding snace. It is this distortion
which gives rise to the dissipative fluxes P and g_appearing
in the hydrodynamic equations. From Egs. (1.2, 1.3, 1.4) it
follows that £%’® does not contribute to molecular averages
of collisionally conserved quantities.

The basic assumption behind the Chapman and Enskog
method of solution is that £ has only an implicit time
dependence through n, u and T which can be eliminated with
the help of the hydrodynamic equations derived from the con-
servation equations, (1.5, 1.6, 1.7). Then Eq. (1.8) is
itutocd intc Belizmonn's equetion. Ry assuming that all

gradients are small (a near local equilibrium state), it is

possible to discard all terms nonlinear in the gradients.



After collecting the zeroth and first order terms in.§7, we

obtain a set of two equations whose solutions yield £$’ and

%@ , the functions needed to evaluate the fluxes. It 1is

found that
il = 'ZO(T) . 109
A= A7) 1.10

the density independent viscosity and thermal conductivity
coefficients np 8nd 4o are defined in reference (3).

These results repfesented a great triumph for the
kinetic theory of gases in that macroscopic laws, relating
fluxes and gradients were given a micfoscopic basis., Moreover,
predictions of transport coefficients for dilute gases were
fairly well in agreement with experimentgl data as extensive
checking of the temperature dependencé of 4, and Qo indicated.

The fact that the above coefficients were not density
dependent, had already been established by mean free path
arguments. .TranSport coefficients represent the ability that
molecules of a gas have to carry from one point to another a
certain molecular property. The distance over which this
transpeort occurs is given by ¢, the mean free path which in a
dilute gas is proportional to 1/n, while the number of car-
riers of molecular properties is also proportional to n. Com-
bining the dependence of Yo and gc,upon,/ and n we find an

explanation for Egs. (1.9, 1.10).



It is important to realize that Chapman and Enskog's
solution is not a general solution of Boltzmann's equation
since Eg. (1.8) is just a particular solution (the normal
solution), the one in which the time dependence is contained
entirely in the functions n(z,t), u(r,t) and T(r,t). How-
ever, any solution f(r,v,t) goes to f(z,v |n(xr,t),ulr,t),
T(r,t)) after a time of the order of 107 seconds and there-
fore, for many physical applications only solutions like the
ones in Lg. (1.8) are of practical importance.

In 1922 Enskog (3) modified Boltzmann's equation for
dense gases., The Enskog theory makes use of rigid spheres.
The model accounts for the energy and momentum which during
rigid spheres collisions are instantaneously exchanged over
g s the distance between the centers of mass of the colliding
molecules. Furthermore, Enskog's theory accounts for higher
order collisions in an approximate manner., It does not take
into consideration the effect of molecular bound states
(since these states are not allowed by the model) or rigor-
ously account for multibody collisional effects.

Enskog's work represented an important step toward the
formulation of a kinetic theory for dense gases., It was,
however, limited to the particular molecular model used and
to the various approximations introduced by the theory. The
problem was now to find how the fluxes of molecular proper-

ties are affected by collisional transfer, multibody colli-



sions, and bound molecular states in a gas of molecules
which obey a more realistic potential.
It is at this point that the role of statistical

mechanics becomes of great importance to the development of

the modern kinetic theory.
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2. SELF CONSISTENT APPROXIMATIONS IN THE KINETIC
THEORY OF A MODERATELY DENSE GAS

2.1 Statistical Mechanical Theory of Transport Phenomena (l)

The dynamical state of a system composed of N mole-
cules without internal structure, is given by specifying 3N
positions and 3N momenta. Such a large amount of informa-
tion is not available and would be of limited usefulness. We
are therefore limited to give a probabilistic description of
the dynamical state of the system (5). This is done by a
statistical examination of a large colliection of Vo macro-
scopically identical systems, called the ensemble. The main
objective of statistical mechanics is to calculate t@g prop-
erties of the system under consideration from the properties
of the ensemble. In a 6N-dimensionasl phase space, the &-
space, the [ phase points are represented by a cloud of
points whose density (number of phase points per unit phase

volume) is defined by
f(N)(.I.'.N:pN) d.)..{.m, 2.1

where

N - ' N . N
L = Xyslaeeely » oM = DysRoeceBN » X" =rpM

r;and Rj are the position and momentum vectors for particle j.
The probability of finding a system in the unit phase volume

dXN is defined to be P™(rN, pM)ax™., The functions P™ and



M
S;M are related by
P‘NJ - f{Nyr’o 2.2

and are normglized so that

fd_}_(_(m P(N) = 1
fdx(n) S,(N) =15

For future convenience we introduce another probability
density P™ (r*, ph) which is defined such that if we take
from the N molecules of a system a set of h molecules, (h) =
(1, 2, 3 .ve. h), then P™dX"™ is the probability that mole-
cule 1 has phase dX,, molecule 2 has phase dXj.... molecule
h has phase dX,. The function P’ can be obtained directly
from P™ by integrating P™ over the phase elements of the

remaining N-h molecules
Pfh} = f d-}_éN'h.) P(NJ 2.3

and  dX™"'= X, Xwe ... Xn

Since in the present kinetic theory we will consider only
gases composed of identical molecules, probability functions
which distinguish between molecules will be of no particular

interest, and we henceforth assume that P™ and P™ are sym-

metric functions.

-

An glternative tc the representation of the state of

the system by one point in ¢-space, is the representation of

the system by a cloud of points in a 6-dimensional phase
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space, thela-Space. A given point determines the position
and momentum of one molecule. If the N molecules are indis-
tinguishable then the arranéément of molecules in u-space is
unaffected by particle interchange. Therefore, there are N!
phase points in ¥-space which correspend to the same repre-
sentation in g-space. The probability £™(r", pM) of find-
ing a molecule (without regard to labelling) in dX,, a mole-
cule in dX,, etc., must be N! greater than P™, the probabil-
ity of finding a particular molecule (say molecule 1) in dX,,

molecule 2 in dX,, etc. It follows that
f(N)(EN’ RN) = NI P‘M) 2',4-

Similarly a set of h molecules can be chosen from N molecules
in N!/(N-h)! ways, which implies that the probability of find-
ing the elements dX,, dX, ....dX, occupied by any h molecules

can be written as
£t (pk, ph) = (N1/(N-h)1) P™M (2", p*) 2.5
Using Egs. (2.3, 2.4), the relationships between P™’ and pit)

£ and P™, we can show that £'*' is related to £ as follows

£ = (1/(0-n)1) JaxM e 2.6

This last identity will be of great importance in establish-
ing a 1link between stTatistical mecnanics and the ulleory ol

transport phenomena.
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The change in time of £ 5 governed by Liouville's
equation, which is a continuity equation of phase points in

the ¥-phase space
D(N) fm =0 2.7

The operator D™’ is defined by

D™ = + i BN, -2 HW, 2.8
}t K ( Dy 3-.1.'5 %EK %Rl
where H'" 1s the Hamiltonian of the N particles. If we
assume pairwise additive interactions between particles, then
H™ is given by

g™ = i(pg /om +}i— ‘Px)) 2.9

K Ik
where Cij is the intermolecular potential between particle
k and j.

Actually we are not interested directly in the time
evolution of £™ since £™) in general, contains much unneces-
sary information. What is of particular importance are the
equations governing the time evolution of lower order distri-
bution functions, particularly £ and £, the functions nec-
essary for a rigorous calculation of the fluxes.

Of the early attempts to derive Boltzmann's equation
from Liouville's equation, of particular interest is the work
oo Hirkwood {(1)!(8), Born ond H.S, Green (7). The derivations

of these authors were based on Boltzmann's "Stosszahlansatz"

(2) which is equivalent to Jean's "molecular chaos assumption”
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(8). In order to introduce into the kinetic theory the
effects of multiple collisions, Bogoliubov (9) replaced the
Ansatz with more general assumptions., His ideas are dis-
cussed in a book by Uhlenbeck and Ford (10), and a complete
list of the attempts to derive Boltzmann's equation from
Liouvillet's equation can be found in review articles by
Ernst, Haines, Dorfman (11), and by Cohen (12). Most of
these theories rely on the formally exact BBGKY hierarchy of
equations as their starting point. We now discuss these
equations.

If Liouville's equation is multiplied by 1/(N-h)! and
then integrated over the phase of the (N-h) molecules, the
use of the relationship between ™ ang £™) in Eq. (2.6)
leads to a hierarchy of h inter-related integrodifferential
equations first derived by Bogoliubov, Born, Green, Kirkwood,'

Yvon (13) and caslled BBGKY equations. For h=1,2 we obtain
D g0 -fd_)gS (0,3 + 0,507 =0 2.10
D £ -fd_)gz 01, £ =0 2.11
The interaction operator 0. , is defined by

0";3 =l ‘pd',) 'J

mdr; T Jw
mxaminaiion of the DBGKY cguaticnec suggests o proeadure to

obtain £ and £. After truncation of the hierarchy by

finding a "suitable approximation" for £®), we could solve
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Eq. (2.10) for £®) and use this solution to find £) from
Eg. (2.11). Furthermore from the first BBGKY equation one
should be able to derive a kinetic equation which in the low
density limit reduces to the Boltzmann equation. To derive
kinetic equations like Boltzmann's is a fundamenﬁal problem
of the kinetic theory of gases.

Choh and Uhlenbeck (14) used Eqs. (2.10, 2.11) and
Bogoliubov's ideas to derive a kinetic equation containing
corrections due to multibody collisions, they specifically
evaluated the three body collision term., From their kinetic
equation, they concluded that transport coefficients can be
written as expansions in powérs of the density. |

Dorfman and Cohen (15), Frieman and Goldman (16), and
Kawasaki and Oppenheim (17), have shown that the density
expansion of £ on which the Choh-Uhlenbeck kinetic equation
is based, diverges after the first two terms and that there-
fore the density expansion for the transport coefficients
proposed by Choh and Uhlenbeck, does not exist. Hanley and
co-workers (ﬁ8) have presented experimental evidence that the
expressions for transport coefficients contain the logarith-
mic dependence on the density suggested by the above authors.

H.S. Green neglected multibody collisions and assumed
the potential to be purely repulsive to use the molecular

cad® s 1 2,A RAaTdomannle
VA Ull Ll &~V Wadiabatanae o~

chaos assumpilon LO GerivVe a kiiicvl

ck
}_V
(4]
a
Nd]
[
1 ¢

with a corrective term due to the size of the molecules.
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Snider and Curtiss (19)(20) used Green's equation to calcu-
late density corrections to # and 4 . Hoffman and Curtiss
(21) (22) (23) refined the Snider and Curtiss results by tak-
ing implicitly into account the effect of three body colli-
sions on the kinetic equation. They derived an equation sim-
ilar to that of Green's by applying a generslization of the
molecular chaos assumption to £f3) and then solving the first
two BBGKY equations for the equilibrium case. They used for

/ / ) ‘P&-'/K— . . .
£, 2 = 28 £ Y where Yo = ye' 9, y is the equilib-

/, l4
rium radial distribution function, and £ , f& are func-
tions of y,/ and vj the pra-collision velocities of the col-

liding molecules. For the nonequilibrium case they let

( 2) ,( 1) ,{ 7]

f - f| fz Y(O) 2012

which is equivalent to the approximation used by Enskog in
his kinetic theory of hard spheres. By retaining only the
first two terms in the density expansion of y, three body
effects were introduced into the kinetic equation,

Comparison of the temperature depsndence of the den-
sity corrections to # and A with experiment reveals that
kinetic theories which are based on a purely repulsive po-
tential fail completely in the low temperature regions.

The purpose of the present dissertation is to derive
8 KluoiLle theory

symmetrical molecules obey a realistic intermolecular poten-
tial which allows molecular bound states.
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2.2 Self Consistent Approximations

The kinetic theory of dilute gases is on g firm theo-
retical basis. Boltzmann's equation gives the time evolu-
tion of the state of the system, and the H-theorem proves
the irreversibility of this kinetic equation and the unique-
ness of fég , its equilibrium solution., Chapman and Enskog
solved Boltzmann's kinetic equation and found a solution,
(the normal solution) £™= r{’+ £{" subject to the condition
that £¢" does not contribute to the zeroth, first and trace
of the second velocity moments.of £® ., 1In the theory, the
relaxation of the system to equilibrium is given by the
equations of change which relate the rate of change of the
macroscopic parameters to the fluxes. These equations are
obtained by taking the zeroth, first and trace of the second
velocity moments of the kinetic equation. Mathematically they
represent Hilbert's conditions of integrability, which afe the
conditions that an integrodifferential equation like the lin-
earized Boltzmann's equation must satisfy to have a solution,
(2lt). The non-equilibrium part of £ does not contribute
to these moments.

In this section we will extend this formalism to the
kinetic theory of dense gases by introducing approximations
to £, £® and £® consistent with the macroscopic conserva-
tion equations and capable of producing a Boltzmann equation

not limited to any particular molecular model. This approach
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was first initiated by Green and Hoffman (25), and further
discussed by Green (26). In this chapter we will refer
extensively to their work.

The first three velocity moments of the nth BBGKY

equationsvare
f Trdv, ( [D""F‘"’ Z Oy f Z f X D (M]=o 2.13
and P, BT ng“ » W= (Lve+ é»g #i)

from which we obtain exact conservation equations for a

cluster of n-particles. These are:

n", Z A.n‘"’<\_a)"" =0 2.1
DRESY

i?

2 (

Z(scnwvfy";,f(%ﬁn‘"@ sl B ™) )= O

gly

it . (470 S2"d 4 fox 0" )) c0 215

3
"

2.16

{n) - (n)
where n'"(( ) = laze ( )£ "and n™ is the n-particle density.
We postulate the existence of a set of nondissipative func-

tions (£8)=(£5,£%, ..£%) of equilibrium form which satisfy
fT‘ dv, dr, (@3 )iy (L.h.s. d®BBGKY Eq.) = 0 2.17

to terms linear in the macroscopic gradients; v and r,. are
the relative velocity and position vectors of particles 1 and

¢. Vhen n=1, the result of the substitution of (fm’hu.'is a
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set of differential equations free of dissipative terms
known as Euler's equations, (to be discussed in section

2.3). It follows that the difference
ny
o LU L 2.18

must contribute only to the V", n)2 terms of Eq. (2.17).
Therefore the functions (f;” ) must contain the dissipative

contributions of (™) to the fluxes. That is, for n=1,2

g = g, (£87 )+g (£) = 0
B =R (£ )+Ro(£5?) =p U 2.19

and hence (X is the coefficient of bulk viscosity)
PR PRE SR
= gx(f?' )+£“’(fcm = 272 + kV’E 2 . 2,20

| LT Te
|

9.> Bxand go, Pp are the kinetic and collisional contribu-

tions to the fluxes; S,U are the shear stress and unit tensors.

In Eq. (2.17) the integPrations over the velocity co-
ordinates can be done immediately, the results are a set of
equations similar to (2.1, 2.15, 2.16). In Eqs. (2.1, 1.15)
we note the existence of (w )™ and (y:v2)”two unknown func-
tions which can be found in principle directly from the equa-
tions in which they appear, once n™) is known. Therefore, one

way to satisfy the first two equations for k=1,2 in (2.17) is

>

to perform the integraiions over the {W)} ond then solve for

i<

the first and second velocity moments of fo' . Because £5’ is of
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equilibrium form, all the odd velocity moments of this func-
tion will vanish and (g&yff“’ will not introduce a new velo-
city moment into Eg. (2.17), k=3. For this reason the pro-

cedure just outlined above, cannot be used to prove the con-
sistency of the energy equation in (2.17).

In general the consistency of the Egs. in (2.17) can
be proved by comparing them with (2.1lL, 2.15, 2.16), the
exact equations of change and then by showing that the two
sets of equations agree to terms linear in the macroscopic
gradients. With this procedure the integrations over the
relative coordinates must be performed, and the convergence
of the integrals in Eqs. (2.15, 2.16) must be examined. What
we propose to do is to replace the integrals in Egs. (2.17)
by a convergent set of integrals. To do this we substitute
the functions n%', (g;f"’and (WF)M) with some other functions
which go to zero quickly as ry , ie2,goes to . With this

purpose in mind we introduce the cluster expansion
qQ
(a) \ L)
In n =Z L ln\]( 2.21
¢ R4

The symbol zgh,indicates the sum over all possible ways a
R
cluster of i molecules can be chosen from the set of (q) =

(j, j*1 ... q) molecules. It follows that

1n Vv = 1n o™

1n V&

in nm’-lnrﬁtln n:'

: -4 .
1n VO = ; (-1) ;-m 1n o 2.22
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(1)

and InV 5 0 as any of the molecules in the g cluster is re-
moved. Taking the time derivative of Eq. (2.22) and employ-
ing Eq. (2.14) we obtain

(a-3) (%)) o @) (a1
) 1nv“" (-1) Z E‘E V%) (1) 3_ E=o0
7 T, ¢ z, "

t =0 pla) ¢
¢ e )""'2; y (=) =2
- m=0 f?n""") -t | T 2e 2’.].
where by definition
@ _ @ f'f' )
n“u” =jldv ) v, 2.25

u®™ will be referred to as the correlated velocity. Eq. (2.24)

is exact since it has been obtained from the exact BBGKY
equations and, therefore, must be linearized before being com-
pared with Eqs. (2.17), k=1. As previously mentioned, Egs.
(2.17), n=1 yields Euler equations for the rate of change of
the macroscopic parameters of the gas at r;, the point ﬁnder
consideration. However, the correlation functions in (2.17)
are nonlocal in the sense that they differ from zero when s
molecule is removed from the cluster, The need to expand
these functions about r,, suggest the féllowing change of

varigbles

(21 ’22""31\) ~ (2, s veelin) 2.26
(V',Vz....vn) —pn (Z| ’XJZ'.".YJH)

A (—1
=( d Yo+ (1=~ 84)
2?‘7_:_;1 T, 2.27

d

.).

i V,. 2 +i:_x_r,,<.5_ 2.28
v K=2 i

.1:: in
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8;, is the Kronecker delta. In the spirit of the expansion

employed by Chapman and Enskog, we write

1n V@ = anam + g 1ln Véj’+ cees

(n,x) {ny (ng)
C_C(. = (__6 , + 8 S () +

v{o, cce o
= ¢
$753), " i, T
J=¢) =V 2,29
iz, Iz

where ¢ marks the order of a given term in the macroscopic
gradients, All correlations in Eqs. (2.17) are assumed to be
slow varying functions of macroscopic position, for this

reason we retain only terms linear in (J/dp, )r,...1in in the

. {n) (n)
theory. The correlated velocities Z(o, and Yy, are

) (mex)
obtained from iq. (2.24) by replacing u'r " with u,+ e(u, -u,).

The identities

(nx) (nx)
glloh = ﬁ(o) cSn,K = W, 5n.o<
{hi) (nx) (hx) (k)
Ci-% (€8 Dret
follow by definition. The expansion of %t is implied by the
equations of change for the singlet velocity distributions
functions. The set of functions ( 1nVi™) are of equilibrium
form and depend, like (1n V‘“‘), on the relative position coordi-

nates (r,;):z. They also have a time and position dependence

Llhicmnomle MV Llhin bnvmammmadnima bk +ha manmaarsAanie nnaitian r.
wial Uu&&& .).\.L" i (VXSRS VWUV L G Vi vt w ChaT  sdmm v m e e e AR ¢ . ‘
—_— 2

The equations in (2.29) imply the following linearized con-
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tinuity equation

A ! b (9-»
(4 G N )V o Z NN

ptw Pl
@) ( (9) @) (g -
({s’-(g,"ﬁaw o LB g = 2,30
i
{(n,m)

ny
Since ) 1nV,Y 1s known and ﬁ is related to Z by

Jt

(n,m) o (kew) (ny1)
ﬁ( (h2ene U1, LHm) (Mp 1 m)) = Z Z %{l,2...trl,l-ﬂ---K-\,m-ﬂ-..n)

P(ﬁgﬂ) =1

(ny) (m#) .
where ? Z[ -1) -"-‘1 2.31

m=0 pﬂm)

(nﬁ)
we can say that, Eq. (2.30) is the equation the Z must
(n,
satisfy. In [K{:;’ ) s 152...are the molecules in the cluster

considered. As an example of the notation we give the values

(
of % e » Mm=2,3,L4 -
(52) ) s.4)
gl(?.’i"S) = ‘6:(345)-?(3952)
(53) 31 (41 (401) (sp)
%{2345) = ‘ﬁyms)- @(452)- g(453)+ (5/4532)

(s4) lw {3,1) 2 ) 3) bl o fl) t4n) (5:1)
-(gtasas) = ls) ?(52)— (53)= %(54)— (ﬁ(sw- elsw‘ @lsaa)-gﬂ%S)

For q=2, Eq. (2.30) transforms to
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( d L+ w.V)in Vo ) (u':)- USIQB-—(QE?- Lﬁs‘}%\%m..vgl =0 5 '32

which is the equation that in section 2.4, we will solve for

(g(i)- u?) and that in section 3.3, will be used to find the

effects of the correlated velocities on the fluxes. Equation

(2.32) is equivalent to Eg. (2.17) k=1, n=1.

Next, we consider a convergent form of the momentum

equation integrated over the relative coordinates. By taking

n\J
the time derivative of ¥g as given by Eq. (2.31) and by

employing Egs. (2.1L, 2.15) we obtain

n
fn,u 8-
| ﬁgdl'm)n(q)(;( % ?+{, ZL( .‘./z.m L(eu ‘-'-‘f?r‘-“-l'?,*'

U, g,enntq»+M"*’))) _0 2.33

(q+1) (|n)
where M = [ dr n I ¢ .
—-— —qf’l b;q*‘l
o iz, 2.34

(2 (4
y. u

Y.

It is at this point that the need and motivation behind the
integrations over the relative coordinates in Egs. (2.17)

becomes apparent as we will see from the argument used to

{9+1)

replace n with nS” in Eq. (2.33).

{§¢1)

We want to show that if n is expanded in a Taylor

series about r,, because of symmetry considerations, only a
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term linear in V¥V will remain in Eq. (2.34). Furthermore,

4 (9+y
if we neglect v" terms, n=2, _D_’{(f” will be replaced by Mlmr

) (@+1
which is Eq. (2.34) with n‘f:ﬁ instead of n ) \hen i=1,
the proof is relatively simple, therefore, we will consider
the case i#1. By definition n®*’ is a totally symmetrical

function with respect to particle interchange implying that

@) (g (9n)
f'];rdr M =Ny + Moy 2.35

(a+) (q-ﬂ)

(a+1)
Myt = %f'l;l'dg_“‘ [d.r'.w n (X,

(a +) (qn) G+1)
—'Z)L = 'éf."-dr|‘ fdr + n _, rooor ) ‘p’,./' 2.37

“ 2 n,i
-q‘H

..rm)_j_cp.,w, ' 2.36

{4+

where zmﬂ) is the center of mass of gq+1 molecules., In Iluwe
L

change the variables of integrations to (rg., )., s by

using the relationship

+r 2.38

= I gy

Lany

The Jacobian of the transformation is unity. In fact

)( ) Hoon?...‘q

$ZipeceLunn T i

)(-I-"“"sl "'Eml,n) - (:)"" g...(:) =1
":[l"‘ —i]_ uo—-{l

If we substitute
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(a+n
into M(,; and re-name the dummy variables of integration

(q+1)
from (Emu ) to (r;; ), then Mgy becomes
(‘Iﬂ)
M(z.h, = "éf-’Tdrlx - L Tan +_ 1 Zr-u'. sLpe - 'Lﬂﬁ)
g+l qtl ©
In the same way, we substitute
q+)
e v ) 1,
g+l 'K
. M)
into My, to obtain
’q”) {a+n)
Moy =% f'"'drm (z,+ _2__ +1 Z T ,__m...r,q,,) 2.39
q

The last step of the proof consists in expanding the inte-

(9+y (Qet)
grands of M,  and Mgy, about r,, the result is

(@)
- 1 A A (9+)
f LI dElK Ml = % %I,.flr d!IK Yan e N (Hie Bgn) an ?r:p,,q“
P

The linearization of Eq. (2.33) is now a straightforward’

operation. We find that

iny ny (e B g S ()
fT”Iu(( gt-r oy )V) f:O)-)l'-( -1) K_L Vin 17(”-,0- Z((")qﬁ’.(@(,@)-ﬁ
v K M =" =
n-) (nyi) (n,3) (9+1)
Z(- ( ); ,( 6, ér/@n Y, M«:OJ )):O 2.10
hore QD("J”" Z":( ')(t‘ﬂ;”l,{)v!mru) (nm>

(ngm) (hym) {m)
and 6‘) is related to@ in the same way (5 "is to ﬁ .
Alna) ~(nsd)

tg. (2.40) is the equation that must be satisfied by (0% - U) )

For the case n=2, ig. (2.40) becomes



27
g _3_ nk(T, -7, )Y + nukTVln v+

2n(1-V8") V (p-nkT) + ifdr (n’ rf:’n"’))cpK,s =0 2.
m

)
With the help of the identity

ﬂ’ (2)
i_. C,C5C, _.) kr. VT g_ g-’ + kngo VT
r m r m

where C=v-u, we transform Eq. (2.41) into the equation that
in section 2.4, will be uéed to find the expression for the

correlated temperatures.

(2)
¢ ()
3.n 2’65 -k 2. VT ) ny - kMo Vinv’ - 20 (1-V5)
m r, m m
3 (o
V (p-nkT) - z;.dg_s (ny -n,n, )3_4)3,,( 2.2
r

=K
(n)

Be = (0 T - (o8-8,

Note that Lg. (2.42) agrees with Egq. (2.17) to terms linear
inV .
Finglly we consider the generalized energy equation.

If we define the correlated temperatures by

3 wkT‘" f('ﬂ'dv ) (v, —u‘q' 2.43
2
(4-1) (n3)
(gl (
then |, }:('U Z T2 m oy O
9 Pﬂ‘l'n) < = =

The starting point in the derivation of an expression to be
subsiliiuied into Uhe r.hi.s. of

n

le" dr: %tﬂl;‘""): fl_jd [_ (MZ J T 2.l

9 bNJt
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is the equation produced by subtracting Eq. (2.14) from
Eq. (2.16). DNamely,

q
q
(9) @) Q)—(2 (4)
g((%t-r;_,-é)(mx m) én KT Uneg W +w “Z0 2.5

a2 <
@) ( =
W, = n(e (q: g‘ém , de é%‘ﬁ.‘f 2.Lh6
Lx
1) l rl

The main problem in the linearization of Eq. (2.45) is to

9 (9+1) Qe
show that to linear terms in V/ , Wz)( n") and W,  (n"”)

" {9t1)
be replaced by Wuw (nS' ) and wz;i(no’

can
), their equilibrium

forms. "his can be easily done with the help of kq. (2.1L4).

In fact
@) 9
L [Tase W = [T (8% L 2%, ) 2.8
K ©<
— 94
) f Tdhie Wy f T, ) ( P 3 n'ﬁ" é.h“‘é‘}x,ﬂ I.lx) 2.149
K K

he linearization of Egs. (2.48, 2.49) and of the other
terms in kq. (2.44) is straightforward. After substitution
of the expression for J T obtained from Eq. (2.4)4) and Eq.

t
(2.15) n=1, into Eq. (2.4l4), we find the desired equation for
N{n.’ ',

Ie {ny1) ns)) (ng1)

f 4’&((4 ‘6”,{0, V)(3k 3__Tmu )— L CtorVp + % Ve Tiey Cos ) +

() (nyn) (nyn)

fh) ~ ~(n+) (n
( ”K TIlO) g{o}- V’&’l Yo +NK(91+ \l\,k(oj + ?{‘o) )=O 2050
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where

" -
Q-1

~{n) (
Klo) =;(—U %N(WK(:)’) 2.51
~ (nvi) @ 2 (n+1)
Wkios =Z(.‘) Z; (Wx(u/ ) 2.52

qQ (l,n)

(w ) — 9 w (v
Yoy =Z(-')";M2‘,,< RO A A A ' R
W "
q ) z . (un) um))) 2.53
V2 Ty .

For n=1, Eq. (2.50) yields the equation that in section 2.3
we will use to derive Buler's energy equation,
- ~ (2}
(3_ +u, V) (3kT) + kTV.u -1 u, V(p-nkT) + Wy =0 2.5k
t 2m m !
Eq. (2.5l) agrees with Eq. (2.17), ¥=3. In Eq. (2.50) the

q
J n‘, terms are clearly proportional to the gradients since

gﬁe time (and position) dependence of n'!) is through the
macroscopic parameters n and T. Since we know ZF"” from

Eqs. (2.30, 2.4,0), we have proved that the consistency of the
generalized continuity and momentum equation, guarantee the
consistency of the generalized energy equation,

Having established the existence of a set of differen-
tial equations that the first three moments of fS”:Efm?)QO"w)
and rrm”)must satisfy, we consider the problem of construct-
ing an expression for fgn consistent with all the veldcity
moments in Iigs. (2,30, 2.40, 2.50) and with conditions (2.1,
2.20). From the definition of n¥’ and the identity in Eq.
(2.21), we let

£ = YT foe) T11 VD 2.55



30

where Z_f;”’indicates the products of all the possible ways
5 "y

a cluster of j molecules can be chosen from k+1,k+2....n

molecules. The first few members of the set -(f’:’) are

(] [}
o fo

(2] (520 _ (1,2)
fo = fo fo5 VXY

3) (1y3) _ (1,3

- ("’31 (2) 2 . ’
fo - fOI fo:z fOS (=73 ] Vglg ‘20{2,3 ‘%1(3)5
(3 (s)  (n4) (b4 (44
= () I v 202 by
fo o1 o2 les log Yy, VO Moly 0223 l%iq
! 3) 3) o) fs) 2(4)
. o3y Yr ol Vo, Vorsq Voizsy 2.56

and by definition

(LI ((})

nf = nf
\ (]
n = ooV
L
. 2,57

Then we choose a form for the correlated singlet velocity

J

{1y
distribution functions (fp ) that will make f5” as defined

in Eq. (2.56) consistent with the moments n%" ,n™ u ,T;
and _;3'17" appearing in Egs. (2.30, 2.40, 2.50).
A pair distribution function with the properties

mentioned above can be obtained by expanding f,,(:,’m in terms of

an orthogonal set of irreducible tensors as
. ==
fo = fo. ( K, + k,.C + k,:8C + k :CCC + cesse) 2,58
GC=0C-1/3CU 2.59
€Cc = ¢e¢ - 1/5 (GU + UC +\@)) 260
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and then by choosing the expansion coefficients (k;) so that
r!” satisfies all the velocity moments in Eqs. (2,30, 2.40,
2.50). If we expand the scalar function k, in Sonine poly-

nomials (27) as

oQ
-5 (¢)
ko = Z, e Sy, (W)

(=0

cote, (3/2 =WY) +c, (172 W¥-5/2 wi-15/8)+.. 2.61

where "
s (3) =PZ (=g) (mtn)1/((n+p)! (mep)ip!) 2.62

then the conditions on f'” in Egs. (2.43, 2.57) require that

K, = 1+(m/3kT ) (w2-3/2) [c*]™ 2.63
L™= < ))(Tff_;l'd'g f?‘o(:( )
To find k,, we operate on Eq. (2.58) with (_(_2())("J
(Q)(n): 1/3 k, (Cz>ln)
f'rom the condition in Eq. (2.25) we obtain
k, = (m/x1™)cy" 2.6l
In a similar way we find k,
ko = %(m/kTS ) [Q%_]m 2.65

All the other coefficients (k.), i) 2 need not be considered
since the velocity moments which they are contracted with

do not appear in the integrodifferential equations we are
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solving. PFurthermore, since higher moments in the expansion

[
of f;, do not contridute to the fluxes, only the first thir-

teen moments will be retained. Truncated in this way, f&’

can be written in a Maxwellian form as

{
2] (B YY)
fao = n,(m/27 kT?) e 2.66
2 = (m/2x1™)(U + _m [C:C:])
= RTP

If we expand Eq. (2.66) about f) and neglect terms not
linear in V', we obtain Eq., (2.58).

Next we want to verify that BEq. (2.58) is consistent
with g{w. To evaluate this moment we need to solve integrals
whose integrands involve the components of utb rank isotropic
tensors. Since there are only three uﬂ’ rank isotropic ten-

sors, we let

jﬁé @@@@ = a,UU+g, W ta,w , C = c/C 2.67
(UUM«=5ﬁ“f 5(w4m3'3W&e,(Qﬁu«;£"hK

The coefficients a,,a;,3; are found by alternatively double
dotting UU, W and & into &q. (2.67). From the solution
of the resulting set of three equations in three unknowns,

we find that a,=a,=a =UVT/15. With the result in kq. (2.67)
to verify that 5 is consistent with the full second velo-

city moment T"is lengthy but simple. We have left to verify

=

N2 a 2 T 3 3 1
fined in Zg. ie consigtent alsoe with

<

[41

B g B ﬂ(”) -
viiav 10 4 a3

(5 R\
\i—e s~y

condition (2.20), this will be done in section 3. 3.
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We discuss next the conditions that must be obeyed by

"r . With the condition in Eg. (2.17), Eq. (2.13) yields

[0
[T‘J«.r@;) J e Orgon T £ :4_Zﬂ1xn,. 2 45,.,+.)n‘"”’
Zf‘J/xhﬂ V‘mm ‘M")‘)“PJ,ml 2, 68

The probability of finding a molecule in dr,, knowing that
there is a molecule in dr,, a molecule in dr,..... a molecule
in dr,, 5,3(11{""")/("f'dr',,,I If qine 1s the interaction potential

between molecule j and molecule n+l1, then

{(n+) “ "

fhn =.[#£nn(nm )/n")(-gifhn“) 2.69
m1) \ ” : |

W, l '—'-fdgn-u(n(w*J /n(‘h) ) __S J-( %_<p"’nr|) 2.70

L
are the average force that the molecules which are not in the

n-particle cluster exert on the molecule j and the average

work done by the molecules on the molecule j. Then

£(V\h) - Z F(‘h-ﬂ) 2'71

3 ==

W (nty JZ’ w.‘"nﬂ\ 2.72

are the average force and work done by N-n molecules on a
cluster of n-molecules. In term of Eqgs. (2.71, 2.72) the

r.h.s. of Eq. (2.68) becomes

[O i=1, n>1
I'.h.s. - n(‘m ;F-(‘Hul i=2, n ) 1
n('n) w(“u) i=3, n > 1 2.73
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i

The decomposition of £= £”+ £/”, and the kg. in (2.17)

impose on fﬁ"' the condition

f} Ju‘, zy,':") ( (,,.J ‘fm ZJ/‘J {(W f&'\’nﬂ ‘Qs,mn(mn))zo 2., 7Th

When n=1, Eq. (2.74) implies that

(2)

n wf‘ =0 = “' E(“ 2,75

(4

In general, however, Eg. (2.75) does not hold and Eqs. (2.19,
2.74) are the conditions that )" must satisfy. In section
3.1 we will find an expression for fJ which will satisfy
Eq. (2.74). In sections 3.3, 3.4 we will show that the
expression for f;*' derived from lg. (2.74) is consistent with
condition (2.20). |

From the definition of f&% , we note that in this theory,
the effect of position correlations between molecules is intro-
duced by VP , the equilibrium radial distribution function
and that the effect of velocity correlations is introduced by
defining the singlet velocity distribution functions in terms
of correlated parameters, as in Eq. (2,58). Since we want to
calculate first density corrections to transport coefficients
due only t§ spacial inhomogeneity and velocity correlations,
all n3 terms in fo will be disrerarded by making Y&’ density
independent. The truncation of 19a’ will cause the coefficient

of bulk viscosity to disappear.



35

2.3 Buler's Equations for an Imperfect Gas

If we let n=1 in Lgs. (2.30, 2.40, 2.54), the gen-
eralized conservation equations reduce to Euler's hydro-

dynamic equations for an imperfect gas. These are

% n+V nu=0 2.76

t

(% +u.V)u+1l .pU=0 2.77
t F T

() +u.V)(u® +E ) + 1 V.up =0 2,78
It P

Here the hydrostatic pressure p and the internal energy per

~

unit mass E , corrected to include the contributions of the

interactions to the thermodynamic functions of the gas, are

p=nkT - 1 [dr n@ ) P(r) 2.79
3”{ - Jr
E = 3nkT + %[ ap n% @(r) 2.80
3

kg, (2.76) could have been obtained directly from the Boltz-
mann equation since interactions, characteristic of a real
dense gas, do not have any consequence on the conservation
of mass. In a dense gas, interactions do affect the stress
tensor. Furthermore, it is the sum of the kinetic and
potential energy and not % mv¢ which is a collision invar-
iant. Therefore, it is no surprise that the Euler momentum
and energy equations cannot be obtained directly from the

first and trace of the second velocity moments of the first
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BBGKY equation without assuming the form of £’

given in Lkqg.
(2.58). We have thus shown that the nondissipative hydro-
dynamic equations (which are Hilbert's integrability condi-
tions) are satisfied if £ is of the form given in Eq. (2.58).
The advantages and the motivation behind the decom-
position of £ = fg' + ff' become now apparent. For we now
notice that the expression for the correlated parameters are
specified in terms of certain well known results of the
statistical mechanics of equilibrium in which the parameters

of the equilibrium state are replaced by parameters of the

local equilibrium state.
2.t The Correlated Velocities and the Temperature Tensors

The equation to be used to find UT=Vo((uP -u®)-(u,-u))
was derived in section 2.2. In Eq. (2.32) we make use of the
thermal energy equation (28) to replace the streaming (or con-

vective) part with a term proportional to V.u so that

% YUY =-g(r) V.u - h(r)fr:s 2,81
o =
where glr) = 1r)V® « vP1nvP(3P) 2.82
3500 el Jr
hir) = »r ngu 2.83
r

Sy= %(Viurvu,) - 1 V.u &,

3

Cv is the specific heat per unit mass. ‘The mathematical

problem represented by the solution of Eq. (2.81) can be
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formulated as follows. Given the first order partial dif-

ferential equation

) 'le: G(z) , 2.8
z ' :

where G(r) is the r.h.s. of Eq. (2,81) we wish to find the

vector Usubject to the conditions

Lim U= o 2.85
Ir—»0

Lim Zﬂu= 0 2.86
hol g Jo o]

Condition (2.85) is imposed by the spacial correlation func-
tion V¥, while the boundary condition (2.86) is due to the
diséppearance of velocity correlations contained in Zﬂuat
large separation.

Provided that the integral

()
G(z) = fd_zg U(x) 2.87
= i

r-xi
exist, therlgﬂucan be uniquely divided into a solenoidal and

irrotational part as follows: (29)

ﬂ“’=§ C(z) + 2 x D(r) 2.88
r ir
Clp) = - %7 fax 1_ 3 U= 2,89
o-x|3x
)
D(r) = + % [ax 1 ) xUlx) 2.90
jp-rfdx
We now derive sufficicnt conditicns for the existence of G (n)

as defined by Eq. (2.87). Aflter changing the integration
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variables to z = x-r and using polar coordinates we obtain
2n m 20 -
g(r) = fdepfde sing fdz ’_L_Lm(_g_"‘;'_)
o o o
If the limit
(
Lim 23/_L_L‘)
Z=»00
exists and ’_I._Cmis bounded then @ is a convergent integral.
t'rom the properties of @’”described in Eqs. (2.85, 2.86) we
conclude that kg. (2.88) is the general solution of Eq. (2.84).
With @ and ¢ representing the polar angles of x with
respect to r, the expression for C(r) can be simplified to a
one dimensional integral. In Eq. (2.89) we substitute the
r.h.s. of Eg. (2.84) for .U Since O{e<2T and 0<O<T,

all terms odd in coss,sine are neglected; the integration over

¢ is easily done, we find

J
Cl(r)=% fd(e'os 8) ] ax x* n(x)(3e0s® -1 )PPig+2e(x) V.1
- ° lx-zl

The form of the integrand of C(r) suggests to expand )3(_-;_?' in
terms of Legendre polynomials., For two vectors m and n
where |[mj>nj
|r_n-_13._-,'=‘l_(1 +(_r_1)oose *1nf (30080 =1)+.....)
m m 2'm
After decomposing the integration over x into the interals

P
i

SCones

c’

0¢XEr and P X< , Wwith kq. (2.51) C{g)

.

C(r)=1rr:S(h, (r)-ha(r))+(g (r)-ge(r)) V.u
5 T Tps T
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v
where: h, (r)-ofdx x*h(x) ; hodr)=- dx h(x)/x

.y

g, (r)= fdx x%g(x) 89,(1‘)—-' dx xg(x)
from which we obtain the irrotatlonal part of ’l(.”

2r.3(he(r )=ha(r))-Pg, (r) Vou 2,91 "
5= e

The solenoidal part of y Jeannot be determined from Eq. (2.90).

3, C(z)=h,(r)5Pf:S-
r" -

We defer discussion of this point to section 2.6,

To find the correlated temperatures we must solve Eq.
(2.41). The comments made in regard to the equation involving
the divergence of the correlated velocities, apply also in
this case. Now the mathematical problem consists in finding
nine unknowns (the components of Zm) from three equations
(the components of the vector on the r.h.s. of Eq. (2.42))

The same arguments used in the derivation of a general solu-
tion of kg, (2.8l) can be used to solve Lkg. (2.42) for E(z.)

In terms of their components Eq. (2.42) decomposes as
% by = Fy 2.92

—K L(Z)KGJ 2093

S

Fx is the kth component of the vector in the r.h.s. of Eg,

)
(2.84), Tjxis a component of the tensor th_e': is a unit vector.

)
Then the similarity of Eq. (2.92) to Eq., (2.8l4) is evident;

from 1q. (2.92) it follows that

Z(i‘) S_ §(r) + 3_ X .l;)’(r) 2.9
T T
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where §(;‘) =; Ek_g_g 2.95
D(r) =2, D8, 2.96
= K

”~

and a; and D, are defined as in Egs. (2.89, 2,90) with t,

replacing @La)

2.5 A General Outline of a Method of Procedure to

Evaluate Transport Coefficients for a Dense Gas

As mentioned in chapter 1, the main problem in the
statistical mechanical approach to the kinetic theory of
gases, is the derivation of closed kinetic equations from the
Liouville's equation. .The BBGKY equations are customarily
taken as a starting point for the solution of this problem, A
formally exact generalization of Boltzmann's equation can be
derived for purely repulsive potentials if it is assumed that
at time t=-® no correlations existed(17). Kinetic equations
obtained from this procedure do not contain effects due to
molecular bound states and lead to transport coefficients which
are not in satisfactory agreement with experiment for real
'gases at low temperatures where presumably bound states play
an important role.

The BBGKY equations are all intercorrelated. 1In fact,
to solve the nth equation of the hierarchy we must know Rn+0
which is the function which satisfies the nth+t1 equation. One

way to proceed in determining the set of functions (f“”)i“is

to truncate the hierarchy at a certain level, say the nth+i
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{n+r)
level, by approximating f in terms of lower order distribu-

tion functions and then solve the coupled but closed set of
hierarchy equations for the functions (£® )y, .

In this dissertation we have presented an glternative
scheme for obtaining the set of functions (£™).,. In chap-
ter 2, we have shown that one can define a set of functions
(fﬂ“)ﬁ, of equilibrium form which contain certain exact veloc-
ity moments of (f“q)zq. These moments satisfy the many-body
conservation equations for particle density, momentum and
energy and, in principle can be obtained from the solution of
these equations. IlMaking the substitution f‘w= £o% f?‘and lin-
earizing the equations in the macroscopic gradients, the BBGLRY
hierarchy then becomes a set of equations governing the
unknown function (ff’x;' « This hierarchy is of course also
coupled, but we assume that by some suitéble approximation it
can be un-coupled so that the unknown functions (£&,£{)..£™
obey a closed set of equations from which they can be deter-
mined. This procedure is presumably preferable to other pos-
sible truncation schemes in that it exactly includes those cor-
relations necessary to derive the n-particle conservation equa-
tions,

By definition the moments of f£™ are related to n, u
and T, hence we required that the velocity moments of the ki-
netiec equation (the 18t BBGKY equation) involving macroscopic

parameters, must give the equations of change of the gas.
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Hydrodynamic equations from the BBGKY hierarchy differ from
the ones derived from the low density Boltzmann's eqﬁation
because all thermodynamic functions ]:ike the hydrostatic pres-
sure and internal energy have a contribution due to the exist-
ence of molecular interactions.

We have shown that these equations contain functions of
the velocity moments of £ (n® ,3‘3{ ,Zw ) and that £&® is cap-
able of satisfying 'the conservation equations of the 2nd BBGKY
equation to terms linear in the macroscopic gradients, (from
this point, all equations will be understood to be valid to
linear terms only, unless otherwise specified). The tensors u®
__‘.Cm, ‘obey differential equations derived from the velocity
moments of the 2nd BBGKY equation. From u® and Emwe could
uniquely define fé"’ (and consequently fc(z’) which can then be
used to find £, the function that satisfies the 1st BBGKY
equation. In this way we would have found £ and £® the
functions needed to correctly calculate transport coefficients.

For the hard sphere molecular model, a form of £ can
be assumed from the theory of Enskog. Then the tensors ?_lw and
;_Z_"" can be directly evaluated and their irrotational parts cal-
culated with the help of the differential equations obeyed by
U™ and Zm. By subtracting the irrotational parts from the
expressions for ':l_Lw and Z“’, the solenoidal parts of these ten-
rs can be determi . |

In general, however, fé"’ is an unknown function. Ve

have shown that £f§’ can be expanded in terms of its velocity
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moments and that it satisfies linear conservation equations.
Only when its velocity moments are known fg? can Ee said to be
uniquely defined, Unfortunately Zﬁ”satisfies a scalar equa-
tion and _(Z_zwa vector equation; for this reason the general
expression of these tensors is not available.

On the basis of the rcsults obtained for hard spheres,
the solenoidal parts of %® and g__‘” are chosen so that the new
expressions for @f”and.%f)are particular solutions of the dif-
ferential equations obeyed by these tensors. In the next chap-
ters we will show that the particular choice of @fuand gfblead
to a kinetic equation and transport coefficients in agreement
with the theory of Enskog. It will also be possible to verify
that the irrotational parts of Zﬁﬂand Zf’are the major contri-

butor to the transport coefficients.
2.6 Correlated Parameters for Hard Spheres

As we have mentioned in sections 2.4 and 2.5, the cor-
related tensors Q#Hand Z?’can each be decomposed into sole-
noidal and irrotational parts. It has been previously shown
that the irrotational terms can be determined by solving gen-
eralized conservation equations with appropriate boundary con-
ditions. However, these equations do not govern the solenoi-
dal terms, which apart from boundary conditions may be arbi-

PRy S R,
VAUl

L -
v OTU

74}

trarily chosen. Cleariy, in the spiriti ol Ui la

we would like to make this choice in such a manner that the
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plausibility of the truncating approximation on ff’ is max-
imal. That is, in a sense, we would like to build into £l

as much of the real correlation as possible so that a simple
truncating approximation on in is permissible, Specifically,
we would like to retain multibody collisional effects in f§)
through the correlated parameters and to determine £#' from
binary collision correlations in the manner of the usual low
density Boltzmann equation.

Unfortunately, we have not yet found an unambiguous
method to carry out this propram, and we are thus forced to
choose the solenoidal parts of the correlated parameters in a
more indirect and less satisfactory way. In this regard, we
will choose as a starting point the hard spheres, dense gas
theory of Enskog(30) which has played an important role in the
kinetic theory of dense fluids. For the hard sphere potential
the collisional term of the 1st BBGKY equation (i.e., the
r.h.s. of ig. (3.13)) requires a knowledge of £ only on the
collision sphere, which is the sphere in the space of r=rs-r,
for which r is infinitesimally greater than the hard sphere
diameter. Lnskog assumed that f® on the collision sphere is

of the form

/ /
£® = £ £ Vg” 2,97
where the primed functions are functions of pre-collision
velocities. That is, for configurations of (r,vj in the rei-

ative position~velocity space for which the binary collision
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is imminent v&=v. On the other hand, for configurations
where the hard sphere collision has just occurred v'is the
velocity immediately prior to collision. The factor (s
takes into account the screening of two colliding molecules

by other molecules in the system and hence accounts, in an
approximate manner, for the effects of multibody interactions.
This is obviously an approximation in that nonequilibrium dis-
tortions of V5 are ignored.

In the spirit of the knskog approximation we assume

that fg” for the hard sphere model should have the form

/
@ ot

@ = 1, for Vi 2.98

which 1s the best approximation to fg) involving only lax-

l
wellian velocity distribution functions. Now fg; is a func-
tion of the macroscopic position pr,= r;+6 and Vi is a func-
tion of X= r + %‘. Expanding this mgcroscopic space ‘dependence

about r, yields

o o S

- -
£8 = fo fo V8! (148, Vinf)' + 1g. VinvY') 2.99
2
¥ = 1/(2 (Wy=W,)

/
9'1 is a unit vector along ¢ ; the bar on top of fc{-,‘,' ang V4'

indicates that these functions are to be evaluated at r,. ‘e
decompose the integrations in the definition of ng’ (g(.u-g(;)) as
£ollows

n® () -uP )= f .]:i.‘ildlzf(oz)(!z“lt) + f f dv, dv, 8 (v,-v, )

¥9)o Y.6
2 <o 2.100



L6

and then use the expression for f% in Eq. (2.99) to obtain
Y= 1ffdv ar S B (v,-3,) . VIn(BY/EY ) 2.101
620
The effect of the collision is to change the direction of Y,
while leaving its magnitude constant, Uéing the identities
Co-Cy = 2(kT/m)y ¢ -c" =(L4kT/m) ¥.¥
Wz-Wz =7 ¥.¢7 WE -V —'u Y.58.7
P = 1/{2 (Wa+H,)
and the change of variables (v,,v, )-=(¥,) we can further sim-
plify Eq. (2.101) to
@ —n -(r¥v?)
U= -b sﬁVz&ﬂ@.’ ar 6.¥¥ e
The integration over ! is trivial. In the integration over
¥, it is convenient to use spherical coordinates. Let ® and

¢ be the polar angles of ¥ with respect to &, then

.= (3/8) §8:Vu §.V6 fdy ({3y -1)gs +(1-y2) U}

from which we find that
@ _ Aa L, 7 '
Up= ~g §&: va V() 2,102
In the same way, from the definition of correlated tempera-

tures and Eq. (2.99) we find that

(2 T(z) -

T?. - G.VT 2.103

2g
3

"he results in Egs, (2,102, 2.103) can now be used to choose

the solenoidal part of ¢@and TW. From Eq. (2.102), the
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irrotational part of Y®at r=¢ is
4 o) =.030: Vu + | ¢.8
P =

(¢
Subtracting this equation from _Q_l,,,s we obtain

S.XQ(E) = - % s.S 2.104
> = |
The vector

,}Exg(g) =-§2(g.(r)v._g+h3(r)§g:_§_\ - %Ec(;) 2.105

is a difference of two particular solutions of the differ-
ential equation obeyed; by Z((:) and it is chosen to represent
the solenoidal part of; ’_l_C{’)for any potential because for hard
Spheres at r=¢ it reduces to iq. (2.10):;,). Adding EQs. (.91,

2.105), the general .expression implied for ~1_,(("is
y?= -r (g, (r) v.u + hj(r)rr ) 2.106

where fdx x*

This expression for 2( "was previously derived by Green and

Hoffman (25) as a varticular solution of Xg. (2.81).
Similarly, from the definition of g’”, by using the

same manipulations emplbyed to derive Eq. (2.102), we obtain

for _ZM at r=¢

TP = -%°(6) k qoe. VT 2,107

=hs
m

and %C(r) —--k V) (§6S. VT ~26. VT U -2 §VT )
r 5 -1
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which implies that, at r=¢

J x D(z) = -2kV8 (6)(U . VT + 1 gVT) 2.108
dr = Sm = 3

As for the solenoidal part of /_Z{(a,’ we assume that for a general

potential

S_x D(r) = -k_g;(r)zVT -k_ 'hg(r)_»::;. VT - _g_ 9‘:'(_1;)
r mr3 mrs r

where, g,(r) = [dx VA P
Adding this equation to the general irrotational part of gm

given by Eq. (2.95) we obtain

‘_Zm-‘-}g_ gy(r)2 VT + k_ hy(r)rre. VT 2.109

mr? mprs
It is easily verified that this is a particular solution of

Eq. (2.42) which is analogous to the correlated velocity func-

tion in Eq. (2,106).
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3. THE VISCOSITY AND THERMAL CONDUCTIVITY
SECOND VIRIAL COEFFICIENTS

3.1 The Kinetic Equation of a Moderately Dense Gas.
Enskog'!s Equation from the BBGKY Hierarchy

In the low density limit the ratio /€ = r.V is
very small, of the order of 163 , and one would be justi-
.ified in treating fg’ as it appears in the first BBGKY equa-
tion as being a function of r, only. In a linear theory,
the spatial inhomogeneity of a dense gas can be taken into
account by Taylor expanding the macroscopic spatiunl depend-
ence of f§” about r, and neglecting all terms which are not
linear in the macroscopic gradients, i.e.'all terms of order
(6/¢)% ny2. If we consider only correlations from two body
collisions, the resulting kinetic equation can then be
written as a modified Boltzmann equation containing a cor-
rective term due to collisional transfer of momentum and
energy between the molecular centers of mass of the collid-
ing molecules. This corrective term alone gives a density
dependence to the transport coefficients ( 31) (the colli-
sional contribution).

In the present kinetic theory of dense gases, beside
the corrections just mentioned, we will introduce correc-
tions due to correlations in the macroscopic parameters. In
the case of multi-body collisions, corrections also arise

when the correlations between colliding molecules which
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originated in previous collisions are taken into account.
Correlations due to multiple collisions are not consid-
ered in the present dissertation.

After decomposing £ and £®*'as in Eq. (2.18) and with
Eq. (2.17) the consistency condition on & , Green and Hoff-
man (25) were able to derive a self-consistent generaliza-
tion of Boltzmann's equation for a dense gas. Their kinetic
equation is of limited practical importance since it is
difficult to solve. Hence the need to introduce into the
theory an approximation which can simplify the problem arises.
The hope is that the mathematical simplicity thus gained
will not be offset by errors implicit in the new kinetic
equation to represent the evolution of the state of the sys-
tenm,

As discussed in section 2,1, the decomposition of £
was made in such a way that ré? alone would contribute to
the equations of change. As a result the condition in Kq.
(2.74) was imposed on £{". The first two terms in the inte-
grand of Eq. (2.7l) represent an implicit time derivative
of ™ along a trajectory traced by a cluster of n-molecules
with respect to the relative vnosition and velocity coordi-
nates, We assume that fg" is chosen so that f¢ 1is con-
stant along these trajectories. For n=2 then K% £{°=0

(12 ..)r- Op= Oy) =KE s  Kote= 0 3.1

L

This equation can be used exactly to relate ng in pre-colli-
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sion and post-collision configuraﬁions on the collision

sphere at r=g.

In the linearized form of the first BBGKY equation
el _ fdéz, 0, £ = fd.}ﬂz 0 £&

we substitute Eq. (3.1) into its r.h.s. and transform the
resulting integral into a surface integral by using Gauss's

thedrem

(2)

Dty - fd.&. O fo = f dv, f i k.v,, £& 3.2

Here & is a unit vector normal to the surface £ of an arbi-
trary sphere of rgdius R, with R exceeding the range of the
potential. Trajectories on this surface will all be non-
bounded, From the solution of Eq. (3.71) we obtain

& (£=0) = £& (t=t,)
with t. renresenting the duration of a collision. We then
decompose the surface 3, into a pre and a post-collision hem-

isphere and rewrite the r.h.s. of Eq. (3.2) as

I'.h.s. = J:)(é) = [fg-.zllfﬁ(?.) (to ) d!?_dz‘ +

On a nonbounded pre-collision trajectory £&’ can be avproxi-

mated by the linearized molecular chaos assumption
£ (6=0) = fo fa (@ (v.) + &(v)) 3.l

From Eq. (3.1) then
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f(l)/ f(u)l (1 + ) (V.I) + é(vzl))

£ e (B(v) + B(vl)) 3.5

£ (t=t, )

£2 (b=t )

A
In the second term of Eq. (3.3) we replace ﬁ with -k, and
then substitute Egs. (3.3, 3.4, 3.5) into Eq. (3.2) to obtain

a generalized Boltzmann equation for a dense gas.

DYe® - J¥(e® ) = 3§ (3) 3.6
J‘u( ) = fd_)sz 0i( )

Ja ($) is Boltzmann's collision operator. Assumptions that
we will make concerning f{¥’ on bounded trajectories will not
affect the generality of the above kinetic equation since
Boltzmann's collision integral is evaluated over a surface
that exceeds the range of the potential, on which of course
there are no bound states and V3’=1.

In the linearization of Eq. (3.6), frequent use of
certain relationships involving the second virial coefficient

B(T) and its temperature derivatives is made. The identities

— )y _ ()
B(1)=] far (1-®) = %fdp_ r %Ivf,, 3.7
2T_§_TB(T) = 2TB(T) = fdg%"lmﬂé“ 3.8
B(T) + TB(T) = -1 [dr r 1nve ) ¥V@ 3.9
3‘[ - &fo
4TB(T) + 21°B(T) = - fdg_ Y810y )? 3.10
A(aP) (1+nZ(T)+...) ' 3.11

=2
nG, -;-T v -§
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Z(T) = B(T) + 7TB(T) + 2T°B(T)
3 3

will be extensively used in this chapter. By substitution

of the Taylor expansion of f{' about p,

£® = £© (1429 1n £2 + % r,VinV®)

o [¢))
£ = £9 £ @

into Lg. (3.6), we obtain the inhomogeneous part of Boltz-

mann's equation plus a corrective term

I®(B) = ( %t+ y_..% )£y = IJULE(p. V InTY + 1) ) -
r

o] -
1]
L ]

(!](f('u (:_)(w,r) )

= fo(2WW:s + (5 -W)_Q.VmT + 2 nZ(7)(3 -W%)v.u)
3 2

(Z)( @ ('z)(w,r)) 3.12

where W = (m/2kT);é_Q_
p:i»(w r) = 2u,. [yl 24, Wy ¢ [W W.{J(T [we]™

J(z)(f(u ‘”(w r)) — _lr_{lt-.i.[\?(:)']. (z) 4)2 ([C] + ZIME.J{?—I:Q‘_

A w £} 2 (z)
(0.2 [e] erog wal %0, - 1 ()
2

~i=

T

For the hard spheres molecular model the corrective term

reduces to
-J (£9 p®(W,r)) = mc-") ; u + 2(LTdwW:s +
3 2

(6m63) (3 -W2)C. V InT
5 2



Sl

This result, substituted into Eq., (3.12) yields Enskog's

equation for the case V&'= 1

Jg' (3) = £§) ( 2(1+nFy)Wu:S + (1+nF, ) (W& 5/2)C. V1nT+

n(22(T)+Fg ) (3/2 ~W?) V.u ) 3.13
3
F = )_.]1:170'3 s, B =2me , Fy = —223T) 3.14
Had we chosen r§’ = fﬁ'ﬁg ﬂ?’everywhere, then all correlated

parameters in section 2.6 vanish and Eq., (3.12) would reduce
to the original Boltzmann's equation. It is the correlation
in the velocitiss that gives a density depenaence to the
transport coefficients.

In section 3.3 we will decompose the expression for
the flux of momentum as in Eq. (2.19), and then, after
evaluating the kinetic and collisional contributions, we will
compare Eg. (2.19) with its equivalent phenomenological equa-
tion to obtain % the coefficient of shear viscosity. The
function £¢’ and therefore P,(f{') is correct to terms linear
in the density while Py is correct to n? terms, hence the n?S
terms will be discarded. The orthogonality conditions on r
can be used to show that there is no kinetic contribution to
the coefficient of bulk viscosity X; implying that K can be
evaluated correctly to n? terms (since Ep is correct to terms
cf this order in n). These same arguments can be used to

show that A, the thermal conductivity coefficient, can be

correctly evaluated only to n' terms.
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In the following discussion, for reasons just ex-
plained we will neglect terms con’sa‘i‘ning I or S whose order
in the density is greater than one and all n™ V.u terms with
m>2. The disappearance of the coefficient of bulk viscosity
from Eq., (3.13) arises from truncation of the density expan-
sion of V¥’ after the first term.

The r.,h.s. of Eq. (3.13) is to be regarded as the
inhomogeneity of the generalized Boltzmann's equation. The
corrective terms Fy and E; in general are functions of tem-
perature and are obtained by equating Eq. (3.12) to Eq. (3.13)
and then by taking the velocity moments of the resulting iden-

tity, We find in this way a set of equations involving E, s Fy

and F :
@)
BS - _123 vu U = fd r V3[e]” (- #/xT) 3.15
FyV 1nT = fdr v5'( [cG)™+ 'é[C]U) 4 (@A) 36

he expressions for Y™ and ‘_?E in kgs. (2.93, 2.96) together
with the identities in Egs. (3.7, 3.8, 3.9, 3.10, 3.11)

yields
Fp = 2 (B(T) + TB(T)) 3.17
5
F, =% (B(T) - E‘I‘B(T - 7T*B(T)) - 3.18
9 . .
B = -2 7(7) 3.19
3

For the hard sphere model Egs. (3.17, 3.18, 3.19) reduce to
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Eq. (3.16).
3.2 The Perturbation Solution of Boltzmann's Equation

Boltzmann collision operator J() is self adjoint in

the sense that it obeys the following identity:
(1&’ J(!) (§)> = <J(2) (.21;,‘) , é)
where (¥, J& () jhv Y I ($)

Ir ﬂ% is any summational invariant 1, ¥, v? or a linear com-

bination of summational invariants, then:
(3 (9),8)> =0

Chapman and Cowling, in their famous book, (3) have shown
that the Fredholm theorem for an integral equation 1ike (3.13)
has a solution if the inhomogeneous part, the r.h.s. of Eq.
(3.13), is orthogonal to 1, v, v2, the solutions of the homo-

geneous equation. Hence

fdv (11{)3 (1 +nk) (L W- _13_ wtu)gf = 0 3.20

fdv ((w2 g) +0F )G £ =0 3.21
for the othogonality conditions

fdy_ (t.e:)fz,(n"’r"’ - f ax, o,zfg') =0 3.22

to be satisfied. Condition (3.20) 1is always satisfied inde-
pendently of the form of Fy. In fact, for (@) =3x the
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integrand is odd in W and simple symmetry arguments can be

used to show that the integral reduces to zero. For ‘B =1,

'4’3 = v¥, the intsgral, upon integration over the orien_tation
angles of W , vanishes.

The Chapman and bknskog method of solution of the Boltz-
mann equation is discussed in many textbooks on nonequilib-
rium thermodynamics, details of the method can be found in
references (32), (33) and (7). The method is based on an

expansion of £ about its local equilibrium form f{}
() - (0
£ =fo (1 +&)

To find ¢, the perturbation coefficient, we must solve Iqg.

(3.13); the auxiliary conditions of orthogonality

fdz (B, £ =0 3.23

will make the solution &(n, u, T) of Eq. (3.13) unique.

We define the following tensors:

k=r£% (1 +nE) (W5~ 5)C 3.2
2

ey

=2£8 (1 +nF,)) (MW - 1WD) 3.25
3 =
In this notation Eq. (3.13) becomes
(@) =%:5+X.Vinl 3.26

We have already seen that {‘;f (1, ¥, v2) are homogeneous

solutions of this equation. Since Jg( €) is linear in &,
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the particular solution &, of Eq. (3.26) must be linear in

S and V1nT. Let the scalar function & be given by
_ 3
= +d =LY + A, VinT + B:S 3,27

The five constant c¢; will be determined by the five condi-
tions of orthogonality. From Eq. (3.23) we find that c,=c = 0;
the constants c¢,, c;, ¢, will be incorporated into £ to trans-

form Eq. (3.27) to
$=A.VInT +@:5 3.28
From the linearity of Boltzmann operator J,(;' we obtain
IF(E) = I A . Vint + 3§ (8):5 3.29

comparing this equation with Eq. (3.26) leads to the follow-

ing integral equations for /_‘_( and §

¢ = 30 (@) 3.30
x = 3§ (4) 3.31

Since Jg' is a scalar operator, it follows from iigs. (3.24,
3.25, 3.30, 3.31) that 8 must be a traceless, symmetric,

second rank tensor and 4 a vector. The form for @ and _4 gi\}en

below,
B =RW) (WW - 1W2T) | 3.32
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is a consequence of Egs. (3.30, 3.31), the two vector equations
in W.
The coefficients of proportionality ®B(W), A(W), are

expanded in terms of Sonine polynomials

AW), = éoa« S3, (W2) = a, + a,(5/2 - W3) + ... 3.34
@(W) = Zby Sz (W) = bo + ..., 3.35

Sonine polynomials are chosen as basis functions for the expan-
sion of A and 8 as a matter of convenience. The orthogonality
relation between the polynomials Sg2(1=0,1,2.....) for 4 and
S‘sil(i=o,1,2.....) for @ guarantee that only the S;é contribu-
tion to the kinetic part of the energy flux and the ng con-
tribution to the kinetic part of the dissipative momentum flux
will be nonzero. The simplest approximation then results
from retention of only these nonzero contributions in the
solutions:

A(W)zxa, (5/2 - W*)

B(W) ~bo 3.36

To find a,, bo we equate Eqs. (3.26, 3.29)

e

:8 + K. VInT = Jg’ (4). VInT + Jg° (B):5 3.37

Note that the zeroth and first moments of Egs. (3.26, 3.29)
give the first two equations of change as expected since m and

my are collision invariants in both the dilute and dense gas

case and lead to the trivial result 0 = 0. On Eg. (3.37) we
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operate on both sides with [dﬂ WW( ). From symmetry con-
siderations the V1nT term vanish and an expression for b, is
found. The opposite effect will be obtained by operating on
the same identity with f AW WWW( ). We obtain

(o, ) - o, 3¢ Ga)y) 55 = o0 3.38

((yw_,;_c) - o, (WM, J&(C (5/2 - W2) )}) . 71nT = 0
3.39
There are no difficulties in proving that
(MW, 2% = n/2 (m/2kT¥ (1 + nBy(T) ) (+@+T0)  3.40

(WWW,%xy = n/ly (m/2kT) (1 + nF,(T) ) (@rw+L 3.4

The integral

! s ) 7
(i, I8 () = [aw, Wi [av, a5 R.v, ) oy (WM, +

1ot
W,Wo - W H, - W, W, ) 3.42

is, however, more difficult. This integration.is simplified
if we replace the integration over the area 2, by an integra-
tion over the projection of Z on a plane normal th the direc-
tion of W If the z-axis is made to coincide with Ese dirrec-
tion of y,then z.z.g = y,cos® and .....ﬁ.z.zdz =..f°-d<? fdG v
cos® sin®. From the geometry of the trajectory the imp;ct
parameter b is equal to r sin® and hence f--- E-Y.uz dz. = ...

nlﬂ ~nS

dej seeVigb db. Iig. (3.40) can be further simpiified by ils
o

transformation of variables (¥,, Wp) — (¥, 7). We obtain
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. q
(1, I (w_)) = (mn? 2"2/1Tsz)fff db dF da by (W, W, +
o

-(P3¥?)

Ezlﬂé‘ WyW - Wok)e 3.43

Since W2 is a summational invariant (i.e. the kinetic energy)
‘'we can replace J&'(WW) with J&'(WW - 1/3 W2U). There is only
one fourth-rank isotropic tensor traceless on its last two

indices

)

h

(o, J& (Wi - 1/3 wzg)>'= A(1/2 (W +W) - 1/3

The coefficient of proportionality A will be found by dotting

W into the above equation
SA = w i (U, 3 (- 1/3 W D)

After some lengthy but straightforward manipulations we find
that A = (unzmnw6ﬂﬂgnﬁ/(2%kT) where the dimensionless

*
viscosity cross section,ll?? is defined by

(-~ (:o

, -¥
fdh’ db b ¥ (1-cos%)e
c

o0

ot f

-]
here X is the angle between ¥ and ¥' (the scattering angle).
An expression for b, can now be obtained by substituting Egs.
(3.40, 3.43) into Eq. (3.38). ‘hus we find that

o =(m/miT)™ 15(14nE, (T)) 3.0l
é[_l_ n O..zjlu.z.)l

The solution of Ea. (3.39) does not present any new problem,

we find
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a, = -(2/m)® 15(1mFa (7)) 3.45
32 no* HyE

These two last results complete the perturbation solution and
yield
- @=1g,(5/2 -W )C.V1InT + bo(WH-1/3 W*U):S 3.46

3.3 The Viscosity Coefficient

Irving and Kirkwood (3l4) have derived general formulas
for the flux of momentum and thermal energy. Their expres-
sions will be used in this section to obtain an equation for
the coefficient of shear viscosity. The kinetic and colli-
sional contribution to the flux of momentum across a surface
moving along with velocity u, the gas streaming velocity, is
given by 3«# f‘_l and _f__q}.i, £1_ is a unit vector normai to thé sur-

face just mentioned and
B, = fay mg g

=fd_g nCCr® (14%) = nkT U - nkTh, S 3.7
and fff AR 2
P, =-1JJ) dv,drjav, rr2 (£% -1 2. V™)) 4 3.48
2 2 r
Upon substitution of the previously defined expressions for
2@ %, £ and , see Egs. (2.18, 2.55, 3.5, 3.46), into Eq.
(3.48), Py can be rewritten as the sum of four integrals. One
of the integrands contains VI, since £ is already rirst

p .}
Vo uva-—

order in V , this integral will be neglected, il WS SuU

tute kq. (2.55) for £ into the integrand containing ryg.v7ffi
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we will obtain integrands which are either odd in r or in G,
and therefore these integrals will all vanish. The two

remalning integrals are:

PY --1[ffdr dy, dv, rrf fg'_g_d)z = (p-nkT)U 3.49
PR =1 fffdr dy, dv, r°P f;?fé'z' cP,q, (&, +&3) | 3.50

Eqs. (3.47, 3.49, 3.50) show that £ does not contribute to
the dissipative part of P and that g(fo“',f“,")=pg as required by
condition 2.20. We substitute next Eq. (3.46) into the sym-

metric integrand of g‘g and obtain

AN I
_2.‘3 ==D, é[ff dr dy, dv, rff !!.E. f‘ 34%; 3,51

In section 3.2 we have discussed the transformation of this

type of integral to scalar form. In this case this procedurs

yields @
Po ==bg I 3.52
&9 1_§ 75
The integral I, is defined by
] lI 2
= 3[[["‘2 dv, d.!'zfé‘l,dz’( (£.0 a - )I'g_‘pcz 3.53
3 r

Comparing the analytical expression for the pressure tensor

P=P«+Pe obtained from Egs. (3.47, 3.49, 3.53),
= pU - (nkT b, +(1/15)be1y)S , 3.5k

with the equivalent phenomenological equation, we obtain the

following expression for the coefficient of shear viscosity
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n =71 + (Fy +%r1_;/§ Iyn + .o0a) 3.55

The coefficient of shear viscosityy, can be written to

linear terms in the density in the form

Y =% (1 +n0'38,7+ cee) 3 ' ' 3.56

Yo is the usual dilute gas viscosity coefficient. From Egs.
(3.55, 3.56) we can solve for B,*;(T"‘) and obtain

AT = 1, (Fy + LTk Iy) 3.57
where ,g,;‘ = 337,/21:'0‘3. As we have mentioned in chapter 1
a density expansion of the transport coefficients does not
exist and higher order terms involve also a logarithmic

dependence on the density.
3.1 The Thermal Conductivity Coefficient

As in the case of the momentum flux, the heat flux

vector g can be decomposed into a kinetic part

e =fd! 1/2 me*0e® = S/l nka, (2kT/m)?VT 3.58
and a potential contribution
a, = - /L [[[dr dv, dv, (C,+Ce).(rP2ed, (£
¢ fﬁ VRe e e 3‘:-2
1/2 p. V£®) - 9, £%0) 3.59

Neglecting integrands odd in either C, r, or nonlinear

V, Q@ reduces to a sum of two integrals containing only ff’,
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implying that g_K(fc(,") = go(£§) = 0. We have in this way ver-
ified the last consistency condition on % expressed in Eq.
(2.19).

From lg. (3.59), after replacing (v,, ¥,) with the
corresponding reduced velocities (¥, ') and performing the

integration over I’ we obtain for g4 = g‘; + gf;’

af = (2kT/m)% (n*a, V 1nT/12T %)I{ 3.60
Q% = (2kT/m)% (5n?a, 7 InT/24T #)I2 3.61
' ( T A
where: I, =ffd£ ar)p, (57 - 1/2 ¢ - (p.2) e 3.62
r
‘2.
If'=”d£ ay @, ¥ - 3/2)6" 3.63

To find 4 we compare the sum q, + g with the phenomenolog-

ical expression for g,

q = -AVT = - A1+n(B, +(1/15WEKT)T, )+... ) VT 3.6

where I,= Ia + 5/2 I3

If we let

A= A1+ nsAe..) 3.65
then A=1 (F+ (1/157%k1)T,) 3,66
)

where A§= 38;&/271‘(73; Ao is the dilute gas thermal conductiv-

ity coefficient.
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L. TRANSPORT COEFFICIENTS FOR THE HARD SPHERE
AND SQUARE WELL MODELS

li.1 Transport Coefficients for Hard Spheres

In order to obtain the viscosity and thermal conduc-
tivity second virial coefficients for a gas of hard spheres
we must solve the integrals I, and I, in Egs. (3.53, 3.62,
3.63). These nine fold integrals can be readily reduced to
six fold integrals by symmetrizing thelr respective intepgrands
and changing the integration variables to (¥,V). The inte-
gration over v, the velocity of the center of mass, can then
be performed immediaﬁely. It is convenient to decompose I4

into two parts as follows:

A

(1] & -{Cs ¥? '
19 =x? [[far ay ap w10 ler: 0¥ e 6™
7 SR

- T' ¥
=—-1—{:'-P- [ffdr dy dP I‘n?lnaaj(y& +Vz lnpﬂl) ( )
23

he2

he evaluation of I%’ is relatively simple. WNotice that the
term V¥ Inv® will give an integral proportional to B(T), the
temperature derivative of the second virial coefficient,

which for hard spheres is zero. ‘The term ¥*) 1InV’behaves

r
like Dirac's delta function
jdrv,?‘) 1nv® =1 13
s r

and 3y (Invey v¥ = S(r-o ) Lol
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With these results the following expression for IS? is
obtained
I%) = <87 n?'6'3 kT LIOS

The evaluation of Iy is a little more difficult. We first

perform the integration over 7 to simplify IQ to
2, -¥*
18 = -wn?ekT + nTTQU%g a¥ r(p.¥') e 4.6
i 25 < TREes T

and then change the integration variables to (r',¥'). Here

¥' is the pre-collision relative velocity and r' is the rela-
tive position vector the colliding molecules would have if
da= 0. Mathematically: (¥',r') = Lim e e "¥ (¥Y,r).

Ty

The Jacobian of this transformation is unity. The inter-
molecular potential must now be redefined in terms of the pre-
collision variables, In Appendix Ag the following identity is

proved

. = X' (' r'=2.r) .7
Elr{'_Tg.fa )zg.r,_}:__rz 4

Due to the delta function behavior of the integrand, I%’# 0
only at r = 6(b,¥'). The dependence of § on b and ¥' can be

seen in Fig. (k.1)
E = _'Q - g! (Gz_bl);é L]..B

In performing the integration over r', we will choose cylin-

drical coordinates with the z-axis aligned with the direction
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of ¢ . ‘Then ¢ %
ol

= 3/5)_ and the integration over z yields
z .

m . -i J o0 3, 2 -Y'z . . Akt
I, =- oo kT+8Win kT ffdb ar vy (e.¥')e (¥,r-r.¥)
83 FAETYS
he.9
At z=-@ , ¥.r' = ¥.r. At z=+w, figure lj.,1 shows that
=+
('r - 2op) [T = L9 (a7 b)) ® 410

We then substitute Lgs. (4.8, l;.10) into Eq. (4.9) to obtain
I, = -LT nc3 kT L1

For the hard sphere moleculer model y 1is obtained from Ea,
(3.56) with B(T)=2Wo3/3 , B(1)=0 and with 1, given by Egs.
()-1-05: )-l-'11). Thus

p= p 1+ Q_‘IASIL&)Z'; 7°(1+§%;1—ﬂ+ ceeed) TP

In finding A we will not encounter any new problem., Notice
that in Egs (3,.61) g_(;' is proportional to B(T) and that there-
fore, for this molecular model, is zero. All of the informa-
tion necessary for the evaluation of g:‘; has already been

derived in this section. We substitute
qG = (1/2 nn*¢3%T) a, V1nT .13
into kgq. (3.66) to obtain

A= Ao(1+ 2n30’5)2' = 2g(1+ lmiod + .,.,) ol

-~ -
he transport coefficients of kgs. (4.12, L4.14) are in agree-

ment with Enskog's to terms linear in the density.
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.2 he Square iell Potential Model

From the analogous calculation done using the rigid
sphere model we have all of the information needed for this
new calculation. The choice of the square well potential has
been made intentionally since besides allowing bound states in
molecules, it avoids mathematical difficulties that, for
example, the more realistic Lennard-Jones potential presents.
Approximations introduced by the choice of the square well
potential are compensated by the felative simplicity of the
mathematics involved which allows to solve analytically most
of the integrals encountered and to.simplify‘greatly many
others, |

This calculation will be useful in establishing the
sensitivity of transport virial coefficients to the molecular
potential, If /5; and 4, from these calculations should com-
pare well with /3; and A% from the Lennard-Jones calculation,
then we would know that these transport coefficients are not
sensitive to the potential and that, therefore, they do not
represent a good test for our theory. )

In section 3.1 we assumed that ff’ is determined by
the equation KI'T® =0 from which we conclude that £ is con-
stant along the two particle trajectory in the relative posi-
tion-velocity space. As previously discussed, it is assumed
that £ contains no vair correlation in pre-collision states

but that such correlation docs exist in post-collisiongl
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states by virtue of the binary qollisions.. The scattering
collisions, therefore, are the randomizing events which drive
the system to equilibrium, that is, which force fg’ to vanish,
Now the bound molecular states do not correspond to scattering
collisions and do not have such a randomizing effect. In fact,
in a binary collision approximation two bound particles never
separate, and, therefore, it seems plausible to assume that
£2 =0 on bounded trajectories. The effects of bounded states
are contained entirely into the correlation functions built
into £&¥ which appear explicitly in the functions F,(T), E, (1)
of the linearized Boltmann equation.

In I, and I, , the integration is over all values of
r,W,,¥, corresponding to bounded and nonbounded states.' Since
the effects of bounded states are contained only in a function
which does not contribute to the fluxes (i.e. £%) and since
the only contribution of £® to Iy and I comes from £,
we can change the integration variables to ;', ﬂ:, Eg and
reduce nine fold integrals to two fold integrals with the same
technique described in chapter 3.

The square well potential is a spherically symmetric

notential defined by

glr) = e 04 r£a
Plr) = - € a$r£c
Plr) =0 r>c

where a is the diameter of ithe moleculer "hard core" and c
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is the range of the molecular potential. Uepending upon the
value of the collision varameter b, deflection can occur witﬁ
or without collision between the two molecular hard cores, In
the following the values of the impact parameter b, which
distinguish these two types of collisions are calculatea.
From the conservation of angular momentum and energy, a rela-

tionship between b and b' is readily obtained. Fig. (L4.2). Ve

find bd'= p'¥ 4.15
Y% = ¢+ Ay .16
b= (b'/ ¥r)( Y1 +E /KT)Z .17

Define h to be the critical value of b obtained by substitut-

ing bf'=a into Eq. (l1,17), then
n( Y1) = (a/ »1)( 1%+ €/Kx7)% .18

Thus h( ¥') is the parameter that distinguishes the two pos-

sible types of collisions. ‘ihat is,

if 0£b£h(¥') Collision of type one (Fig. (4.2))
if h(¥') €b £ ¢ Collision of type two (Fig. (1.3))

if b> ¢ No collison

In collision of type one, the molecules suffer a hard core
collision as well as soft noténtial interaction and rm, the
distance of closest apnroach between the two colliding mole-

cules, is equal to a ( see rigs. (4.2, L.4t)). e postpone the
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discussion of the effective potential in Figs. (4.4, L.5) to
chapter 5. In collisions of type two, r, »a, and only soft
interactions occur. See Figs. (4.3, L.5).

Since Iq and I, are similar, we will refer our dis-
cussion only to the solution of I,(T) and then give, at the
end of this chapter, expressions for both 4£§T*) and /3:(T*).
In iq. (3.53), we change the integrafion variables to (r',2',)
and perform the integration over_[{ using Eqg. (h.?)-Iq then

becomes

"

Iy= kT3 ffdg' ay (3(2.2)+y)r? e
(¥1,3 (¥'.p'-2.r) - H2) .19

I KT

The integration over the position coordinate can be carried
out using cylindrical coordinates, as discussed in section
4.1, In Eq. (4L..19) the part of the integrand containing only
Vﬂ'can be integrated immediately over z, in this case we
need to find only (¥.r'=Y.r) at Z=+®. The other part of the
integrand containing (2. ¥') cannot be directly integrated
over z, since (r. ¥') is a function of z. We will instead
first find an expression for (r!¥'-r.y) in terms of z and ¥',
then perform the derivative with respect to z, and finally
integrate over z.

Define t, as the duration of a collision and 2z, the dis-
tance the incoming molecule would have gone in time t if it had

not suffered a collision. Then (see Figs. (L.2, L4.3))
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Zo = ¥ - .20
and for type one collisions

Yl.p! = Yl.c +¥'z .21
Y.r = ¥.c + (z/¥') Y%, IL.22

Yi.pt = ¥ .¢c + ¥z .23
Yor = Y.lalte/2 = (f -t,)) (¥/¥1) ) .2k
for zo./2 € z £ 24

Here, to is the time elapse since the molecule was at z=0. It

is more convenient to rewrite Eq. (L.24) in terms of z as fol-

lows:
Y.r = ¥».alz -z02/2) (¥7/¥) . l.25
In the case z 7? z. then

io_I: = Zo_?_e + (Z -Zo)g' L|-026

Y.p' = ¥1.c t+ ¥'zo + (2 -20)d! h.27

An expression for z, can readily be found from geometricsl

arguments (see Fig. (L.2)). ''hus we find that

t, = d/¥ .28

d = 2(c? -p¥ )= 1129
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Substitution of ILgs. (4.18, i1.28, L.29) in Eq. (4.19) yields

the desired equation for 2z,

Zo = (28'/(8'2+6/kT))((cz(Y'z+€/kT)-bz'b"z’);§ -
(a2(¥1%+€/KT) 1% ¥ 12 )}é) ' b 30

Using exactly the same geometric and conservation arguments,
analogous relationships for ¥.r and #'.r' can be derived in

the case of collision of type two. <These are, for z< zo

Yer = ¥.c + (2¥%/2") Ly 31
i'

._I._' =z‘og+yz I.L¢3p

and for 2z z,,

dor' = Juc + 820 + (2 -2 )¥0, .33

The mathematical relationships needed to define (¥'.r'-y.r)
over all nossible values of z and b are now available. In

tabular form they are:

¥ .ct¥z-d.c-(¥2/¥ )z, 0¢z(2¢/2, O<bch(¥') - ly.3h
Hectd8z—y,a-(2-26/2)(¥%/¥'), 20/2 < 2¢Z,0<b<h(¥") .35
deCt ¥ z=y,p-(2-2.)1, Z> 2., O<¢b<h(¥?Y) lie 36
ye.ctdtz=p,c-(¥2/2" )z, 0¢z<¢zo, h(¥')<b<e L.37
Y.ct¥'z-j.r-(z=-20)¥! Z)Zg h(¥!)<b<e Iy 38

Let us define a quantity w, by the relation
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w°=¥{§ (¥'.r'-2.2) + /KT k.39
z |

If any of the expressions for (¥'.r'-¥.r) given by Egs. (4.3L,
L.38) are substituted into Eq. (L.39) the result that w, as
defined above behaves like a Dirac delta function is obtained.
This result is not surprising since worepresents an expression
for Jf, where ¢, the square well potential, is a step func-

r

tion., These last remarks suggest another equivalent way in

which w, can be written; namely

Wwo= a,6(z) + a,8(z-2z.,), if b >h(¥') L .o
We= ¢, 8(z) + ¢,;8(2-2¢/2) + cz(z-20), if beh(P) I

The mathematical method used to find the constant §-function

strength are given in Appendix B . We find that

1 1
a, =a,=c, =cy =" (cz (¥'%+ €/kT)- ¥4 p* )2~ y1% (c?-b* )2 .2

Oz=-23' (az(yﬂ"l- C/kT)—y'zbz )];é ll-’-\tB

These last two equations contain the final pieces of informa-
tion needed to redefine the integrand of I7 exnlicitly in

terms of the variables of integration b,z,and ¢!,
lt.3 Transport Coefficients for the Square VYell Potential

For convenience, we rewrite I, as

- |)
I,= M3 ntkT(31, -Is)

where I;; j]&i'dg' w(r. ') e
_Bn?_
I.,I=ffd3_"d;' Wo ¥ e

2
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The integration over r' in Ii;)is easily carried out in cylin-
drical coordinates. With tho help of kgs. (l1.3l., L.35, L.36,
.37, h.38),1%‘ becomes

g 2
@ 2 /) 2(nl_g2 3 @ ol
Iy=-cl 8 +5T ¢ +16T2(c®-a%) [a¥' '° (¥ +€ e L.4L

“) 15 complicated by the factor (Z.¥') in

The evaluation of I,
the integrand. Besides being a function of z, this quantity
assumes different forms for different types of collisions, We
decompose the integration over b into two parts (0¢b<h and
h¢b¢c) containing values of b which correspond to the two
types of collisions. Using tgs. (L.40, L.41, L.42, L.43) we

then write
h(¥")

2
(‘)— on (ﬂir' fdb ve, (C.¥ )ze fdx'f db be, (4. ¥ Y&t
h{xY) 2
-y A
ﬂiw fdb bey (2. .21)* o fd)_“ dbe baz(g-l'f)
h(¥')
L.y5
From Pigs. (4.3, L.3) we have
c.¥' = ¥ cos(E&cosﬂ(g )=-(?f‘/c)(c""-b"')l'é
2 c)

Using the law of cosines and the principle of energy and momen-
tum conservation, other important relations can easily be

derived., In the case of collisions of type one, we find that

a.¥' + ¥'cos 4
cosd =(h/e)(1-cos?9)-(1- bz‘/ca);éc089
cos 0 =(1/ac) (b'2+(ct-b'? )%= (a2-b1?)%)

b! = by (¥*+ €/kT)
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2,.¥' = ¥lcos g

end cos@A = cos((T=@)-sin'(b/c))

:-LG 1
=(2b c¢)(i-cos® )%cos® -(2cos?6-1)(1- b*/c?)™
In the case of collisions of type two, we have

ro.¥' = ¥1(2bb'(1- b'*/c?) -1 (2b'®-c?)(1- b*/c? )lé)
2 =

An analytical solution to I%’ is impossible, and it is neces-

sary to evaluate I%‘ (and I(,;’ ) numerically. These calcula-
tions will be discussed in chapter 6.

For the' square well potential it is easily shown that
the second virial coefficient and its temperature derivatives

are of the form

B(T) = ((2/3 &) (1+(e3/a -1) (1-e/XTy) L6
TB(T) = (21/3) ( € /kT) (c? ~a3)e /KT 47

P2E(T) = -(21/3) (3 -a?)(2+ €/xT)( €/xT)e% T .18

When tgs. (L.ll, L.45, L b, 447, LU48) are substituted into
Eq. (3.49) we obtain the final Torm of AYT) to be used in
the numerical calculation. @ As mentioned previously the eval-
uwation of I, is similar to the evaluation of I . In this

case we find that
(v ®© 35 2
Iy= 16kT'ﬂz(I,,I + (e -g®) fda“ §1(5- 92 )(¥? +&/kT)5e8 +
6 (s}

© - . _
f"sl ay'(28'%-1)(E/xT)2 y? g¥'° -g2 (5432 € %)
3 (82 + g/kT) 32 3 kT
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IV
-E(e3 ~ad)  a¥'(e/kr) (¥* +£/kT)l@(_§_a’"' -1)¢'e )u,u,g

The double integrals apvearing in I, can be written in terms

of I%’. Hence computation of I, involves only three new one

dimensional integrals.
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Figure L .1 Collision of two hard spheres
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Figure l;.2 Collision of type one. ABC is the trajectory
of ths conter of mess of narticle 2 relative
to particle 1 whose mass center is at O.
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Figure 4.3 Collision of type two. ABC is the trajectory
of the center of mass of particle 2 relative
to nartiele 1 whose mass center is at O.
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5. TRANSPORT COEFFICIENTS FOR THE LENNARD-JONES MODEL
5.1 The Deseription of the Dynamics of Collision (35)

In order to evaluate the fluxes and therefore trans-
port coefficients, it is necessary to solve the dynamical
problem of the collision of two molecules of equai mass inter-
acting through the central force potential ¢ . As was shown
in the previous chapter, this is a fairly easy problem for the
square well potential because collision trajectories can be
decomposed into linear segments. For a continously varying
potential, such as the Lennard-JoneS potential, the probleﬁ
is more complicated.

The Lennard-Jdones potential is defined as follows:
#(r) = eF(r/ec), Flr/s) = h( (6/p) =(e/z)) 5.

where & , as before, is the "depth of the well", that is the
value of <P(r) at the minimum of the <®(r) vs. r curve. & is
the value of r when ¢=0.

Due to the complexity of the collision dynamies it is
found to be convenient to introduce a new sét of integration
variables for the evaluation of the integrals Iq and I, . In
this section we describe the various possible types of binary
collisions which can occur for molecules which interact through
the Lennaord-Jones potenﬁiai- The parametrization of these col-
lisions is the basis for the choice of the new integration var-

iables.
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As is well known, the collision between two identical
particles interacting via a central force field takes place
in a plane of fixed orientation which translates with the con-
stant velocity of the center of mass. The angular momentum L,
and the energy E of the motion relative to the center of mass,
are conserved; L is a vector normal to the plane of collision,

lThese two constants of the motion can be written in the form

L=mrxv,, L=mby o 5,2
2
E=m# + (L2 + ¢(r) ) - 5.3
mre

where © is the time rate of change of the particle separation

r; mp® is the radial kinetic energy E,.. The rotational

kinetic energy giz in Eq. (5.3) has been written here in terms
of L and r, angrsince the angular momentum for a given col-
lision is conserved the rotational kinetic energy on a given
trajectory varies only with r. Therefore, E can be thought of
as the Hamiltonian of a hypothetical one dimensional problem
for the scattering of a particle of mass m with position r,
and velocity r, from a scatterer located at the origin which
interacts with the particle via the effective notential,

E¢ = L% + @(r) ( Fig.(5.1)). It is convenient to write Eg.

mr?
(5.3) in the following reduced form

/p¥ + D(r) kT S.lt

A plot of Epvs. r gives a curve parameterized by Eb* = 17,

=
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Different one dimensional interaction potentials are vpossible,
for different values of this parameter. Fig. (5.2) shows a
collection of such curves. Note the existence of a critical
value (Eb%). at which an inflection point occurs. For all
curves with (Eb® )»(Eb*), , Ee(r) is a monotonically decreas-
ing function of r and behaves as if it were a repulsive poten-
tial. For (Eb?)<((Eb*)., curves have both a maximum which goes
to zero as (Ep*)—» 0 (head-on collision), and a minimum which
goes to -¢ as (Eb*)—» 0, Fig. (5.2) has been reproduced from
as article by D. E. Stogryn and J. O, Hirshfelder (36). For
values of (Eb?)<(Eb*). trajectories exist for which molecules
can orbit around the scatterer. In Fig. (5.3) the shaded
area represents values of Eg and r corresponding to these
orbital motions; if the total energy E should be slightly
greater than the maximum of the E¢ vs. r curve, the collid-
ing molecule after orbiting for some time, will go over the
"hump", reach a distance of closest approach from the scat-
terer r,, with r;=r,, (r.. is, as before, the largest turning
point, and in this case r; is the only turning point), and
then turn away. If E.shduld be slightly smaller than the
value of Ee at the "hump", the molecule after orbiting the
scatterer with an orbit of radius r, will leave the potential
field, in this case r,=r,, r.>r.. Therefore, for each tra-
jectory with (Wp2)((Ebh?).. there exists an energy I equal to
e at the "hump" for which two vossible values of r, can

exist, As we later discuss, the collection of these points
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define the curve BCD in Fig. (5.4), which is a plot of % vs. z,
z=rm/s. A point in the shaded area of Fig. (5.L) gives either
a turning noint and energy for which there is no trajectory
(as in the area under AB for which the kinetic energy would
be negative), or if the trajecfory exists the turning points
are either inner or outer turning points of a bound state, as
in the area under BCD. Any point in the nonshaded area of
Fig. (5.4) corresponds to the energy and turning point of a
nonbounded tra jectory.

Line AB is a portion of the curve Ep vs. r for the case

of a head-on collision (i.e., E,=®)., That is

2
v =F(z) , z<zp v‘i:E/e : . 5.5

Curve CD is the locus of the outer turning points r, for tra-
jectories with (Eb%){(Eb?). and with E equal to Ep at the
"hump". For every turning point on CD, the radial component
of the kinetic energy vanishes and the effective potential is

a maximam. That is

[ ] Q.
B
T
oV i

and

These two equations can be used to determine the impact vara-
meter of the trajectories corresponding to the line CD. Thus
we find that

b(E,2) = ( F'(zo)zd/21 )2, F' = )F 6
L2 ( Z)Z/ .3_2. ‘ 5
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This result then can be substituted into liq. (5.l4) to find the
equation for the curve CD which is
2
v = F(zo) + 2z, F'(2,) 5.7
2
A point Efe, zo, on the curve BC is determined by the

relation
Eg(zi) = Ep(20) = E 5.8

where E/e, zo is a point on (D. Eg. (5.8) can be written in

the form

P, = 72 + 1228 - 8zf - 2 22 + 20 =0 5.9
z:0P(z:) Tlzi) z:F(z:) T(zi)

where Pz is a 12th degree polynomial in z,. The behavior of
P, for three values of z=z; is shown in Fig. (5.5); determi-
nation of the roots of P, is discussed elsewhere (37). A
graph of z¢ vs. z; is given in Fig. (5.6). Since z, and z,
are two points on the same trajectory, they must have the

same impact parameter. If we substitute z, obtained from the
solution of P, into Eq. (5.6) to determine b, then we can sub-

stitute this value of b into Eg., (5.3) to obtain the result

. ,
v¥ = F(z.) + z3 F'(z,) 5.10
2z.2
this completes the determination of the curve BCD. The curve
*

of ¥ wa, 2. in Fig. (5.L). has a maximum at which z, = z, = 2%
€

This maximum can be determined from the relation
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_3_ (F(zp) + zoF'(20)) | =0
Z, 2 2o=2%

At the maximum we find that
= (50, v =1u/5, (ov¥)l = (36/25)5" 5.11

Egs. (5.5, 5.7, 5.10, 5.11) contain the information necessary

* *
to numerically calculate 6”1(T*) and Bﬁ(T*).
5.2 Reduction of the Virial Coefficients to Computational Forms

We write I, as given in Eq, (3.53) in terms of spheri-

cal coordinates as follows

°0 w .acz
Ip= %f;r 3[ayy*{desine #° (3(R.2' F1)e 5,12
K %E'ET T : ] of * 3"1? 3L-2

where ¢ is the angle between the vectors r and-¢{. The inte-
gration over 6 can be simplified by using fhe fact that the
trajectory is symmetric ébout the apse 1line (38). We then
decompose I”I into the sum of two integrals, one evaluated on
the incoming trajectory, which is that part of thé trajectory

for which
r.¥' = cosdk , 0K6<T/2 5.13

and the other on the outgoing trajectory, that is where

~

P2 = —cos(d-2dm) , M/2<0<KW . 5.14

In =g. (5.14) #m is the largest value of #. ‘This occurs when

r=r,, Fig. (5.1). Using Egs. (5.13, 5.14) we can write I in
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the form
Tif2 i
Iq=... jéG sinf(3cos® -1) +,.. jﬁssine(Bcosz(d-2dm)-1)
) o

e

5.15
If we make the change of variable ¥=ii-0 in the second r.h.s.
integral, then the two integrals in Eg. (5.15) can be eval-
uated on the same interval, i.e., 0%4¢£7/2. Introducing the

following reduced variables
* 3
X = r/s v="T%Y=y

= kr/e F(x) = P(x)/

Eg. (5.15) can be transformed to

T o o
I,= QG—"TTV"f ffdw dv dx vAv' xF(x) sinp(3cosit +
16T%72% © 2 L TE
3cos? (d =2dm)-2 )€ 5.16

The integration variable x fixes a point on a tra jectory
characterized by.the parameters (v,¥). An integration over
all values of v, x andy¥, as given by the limit of integra-
tion in kq. (5.16) would include also bound states (b.s.)..
Since b.s. do not contribute directly to the fluxes we change
the integration variables to (v',z,x) and then use Fig. (5.L)
to restrict the limit of integrations of v' and z to non-
bounded states only. The Jacobian of the transformation
(v,¥, x)-(v',2,x) is (39)

10} = J(vt,z,x) = v H(v,z)
dV ,y,x) Glx,v,z) (vE-F(x))e(ve-F(z))%=
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where: H(v,z) = v' = F(z) - z F'(z)/2
G(v,2,x) = ( x*(vi-F(x)) - z2(v3-F(z)) )%
v = y* - F(x)

@ -F(2))% = (x/z) (v2=F(x))%siny

With the new integration variables I, becomes

oD

17= a(T*)jAV dzjax zx2v3F' (x) Al(x,2,v)H(z,v) V%*5.17
G(x,z,v)

where: a(T?*) = QEET*-
15
A(z,v,x) = 3cos® + 3cos?(4-2dm) - 2

® 5.18

d=2z(1- F(z)/v&)% dy (1- Fly) - z2(1- F(z)) )
2y ve yz ve

and dm is obtained from Ig. (5.18) with z replacing x in the
lower limit of integration.
Similarly, for the thermal conductivity coefficient
we find that
oo o o0 -V%‘*
I, = Za(T*)Tf/&v dz [dx vzx B(xzz,v)H§z,v) e 5.19
e ° 2 G(x,2z,v :
where B(x,z,v)=( xF'(x)(5 -li(1+cosﬂl+cos‘(4-2JW)))+
T

2
5F(x)(¥*-3) ) .
T# 2
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Figure 5.1 Dynamics of one dimensional collision
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6. NUMERICAL RESULTS AND CONCLUSIONS
6.1 The Square Well Calculations

For the square well calculations, the integrations in
Eq. (4.45) are limited to regions of the pre-collision rela-
tive velocity ¥' and of the impact parameter b as represented
~in Pig. (6.1). Regions I and II contain values of b and V'
for collisions in which the two hard cores of the molecules
touch. On the region III trajectories, only soft potential
interactions occur. In Fig. (6.1) we note the existence of a
critical value §' in the domain of ¢' such that for any ¥'< EA
and b{c (i.e., region I) there is a hard interaction. This
follows since, from the definition of h(¥'), we know that as
h=—sc, I'—¥ . On the other hand, as h-ea, 3"—-"@‘, the value

of ¥ is found from momentum conservation arguments to be

cy' =ya = a(l” + €/kT)E 6.1

Y) = ale/(k2(c —a%)))*= | 6.2

A transformation of variables is needed to rewrite Eq. (L.45)
in a form more suitable for numerical solution.
If we let t=¢®, then from Eg., (l4.4)5) the five basic
8

integrals that must be evaluated to find I, =§:~, L(,:;' transform to

oD
Ly = fdt t &5(t +T% )%
DV t P J
Ly = fat t% [ab be, (47.2)
L(3) - °re Sé -t h(t) 1 2
5 = Jat t%e" [db bey (¥'.7)

o
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o <
Ly =j at t¥e* [db ba, (¥'.3)
is) "~ -t < -~
L,y = ] dt t*e jdb ba, (£'.2)
o o

The vectors a, r, and ¢ were introduced in chapter L (Figs.
(Le2, 4.3)). After some numerical experimentation, it was
found that the Gauss and Gauss-Laguerre 32 points quadrature
formulae give the best results in the evaluation of both Iy
and I, (410). Accuracy tests were performed for these calcu-
lations by alternatively changing the number of quadrature
points of one integration while keeping the quadrature points
of the other constant. The results of these tests for the
evaluation of I, for argon are given in the following table:

Table 6.1 Gauss-Laguerre and Gauss approximations of
I, for Argon

I a DQGn Ia DQAn

65.903006 8 66.195635 8
65.901.911 16 66.001000 16
65.905185 32 65.9381:35 2l
65.905182 6l 65.905185 32

The symbols DQGn and DQAn are the abbreviations for the 1IBM
Scientific Subroutine Package which executes the n-points
Gauss and Gauss-Laguerre method of integration on the IBM
model 360/65 computer. The computation time for one value or

¥ was 13.16 sec. for I and 13.39 sec. for Iy (41).
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6,2 The Lennard-Jones Calculation (37)(38)

For the Lennard-Jones calculation, the integration
over v and z in Iq and 14, must be limited to the nonbound
state region, which is the nonshaded area in Fig. (5.4). For
computational convenience we decompose Iﬁ into three parts
corresponding to thé three possible limits of integration for

z and v as follows:

3 ) Zugi) =0 vk
_ (o) (IJ_ * 3.3 ' -
Iy=2In, Iy=all* Jav[dz]dx ®v2F'(x) e
Vi 24¢)
( A(x,v,2z)H(v,z) / G(x,v,2) )
where w, = (F(z))™ > 26 =0, 24 =1

2
vy = (F(z) + gi F'(Zc))? Zg, = 1y, 24, = 2

£

= @

1}
N
-
N
s

}

2z W2
Vi) = (F(z) + 2 Fir(z)) 9 265
2

To find A(x,v,z), we must know & which is defined by Iqg.
(5.18). 1In Eq. (5.18) we replace y by the variable w which .is-

defined by the transformation
w = (y=3x)/(y+x) -1 ew &

Since the integration limits on w are finite we can use Gauss's

guadrature formula (eight points are required) to compute A& .
The integrations over x are complicated by the exist-

ence of a pole at the lower limit of integration, since as

x—»z. G(x,z,v)-»0. However, of course, the integral exists.

In fact, when x=2z, the internuclear separation of the collid-

ing molecules is equal to their distance of closest approach.
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At this point the radial component of the relative velocity
vanishes and consequently the total energy E is equal to the
effective potential Eg. Therefore, as x-»z, H(x,v)-'o which
assures the convergence of 17 .

In order to use a Gauss-Laguerre quadrature formula for

the x integration we introduce the change of variable
t = (x-3z)/(x+z) -1 £ £ £

Lo guarantee sufficient accuracy with a minimum of computa-
tion time it is necessary to subdivide the range of t into
five intervals. Sixteen point formulae were used in four
intervals and a 32 point formula was used in the fifth, These
guaranteed an accuracy of four significant figures.

In I, the variable v is replaced by £ with
L= (v=3vu )/ (vivg) -1 £ ¢ £

Note that as € -»+1, the integrand in IW has the indeterminant
-V#i
form 0/0. 'The exponential e makes the numerator converge

to zero faster than the denominator so that as 4—+1, I, =~0.
However, in order to avoid computational difficulties, the
upper 1limit of integration was replaced by 1-166 . In Ié”,

if we make the substitution (37)

s =(F(z)/T%) ( (3+€)/(1-€) )* 0% s 2=

then the integrand I%‘transforms to I#’=..../AS...e's
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and the s-integration can be performed with an eight point
Gauss-Laguerre quadrature formula with great accuracy. In

I% the integration over z can be executed immediately with a
32 point Gaués's formula; the integrations in I#Jare similar
to the ones in I{’. 1In Ig'we perform first the change of var-

iagble
m = (z2=3z¥%)/(2+2%) -1 £ nm ¢ 1

and then use the same quadrature formulae. A summary of the
integration methods used in the computation of Iﬁ is given in

table 6.2.

Table 6,2 Quadrature formulae chosen in the computation of 17

Iy 1y’ 1,
¢ DQG8 D16 D4G8
s DQL8 - -

z ~-- DRG32 --

m - - . DyG32
DYG96 DLG96 DWG96

W DQG8 DQG8 DQG8

A more detailed discussion of the techniques used in the compu-

tation of I. and I, as well as a listing of the explicit forms

of (Iédta used in the fortran program can be found in refer-
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ence (37). 1In thig same reference, the accuracy of each
quadrature used is given, and the results of the tests are
presented in tabular form. A fortran double precision pro-
gram for I, can be obtained from the one for 1, after some
simple modifications. The computation time for one value of

r¥*41s or 339.81 secs. for I, and 61.41 secs. for Iﬂ'
6.3 Numerical Results

We now compare transport coefficients calculated from
our theory using the square well potential and the Lennard-
Jones potential with those obtained from experimental data.
The Lennard-iones potential is somewhat more realistic than
the square well potential in that it is continuously varyihg;
on the other hand, the square well potential is a three param-
seors potential and hence more flexible, Both potentials are
in qualitative agreement with experimentally determined inter-
action potentials in that they are attractive at large inter-
molecular separations and renulsive at short separations.
Comparison of calculated results using the two forms of the
potential illustrates the sensitivity of the transport coeffi-
cients to the detailed form of the interactions., The calcu-
lated results using the two forms are not in quantitative
agreement, but they do show the same qualitative temperature
deﬁendence, ‘Tis qualitative behavior is in agreement with

experiment; however, the experimental data is not sufficiently
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reliable to make quantitatiﬁe comparisons meaningfﬁl.

The square well potential leads to transport coeffi-
cients which are universal functions of the reduced tempera-
ture T¥ and of the ratio D = a/c, therefore all gases with
the same D should obey a law of corresponding states for a
plot of A&: or /@f vs. T, In tables 6.l and 6.5 and Figs.
(6.2, 6.3, 6,1, 6.5) the results of the square well.calcula-
ion are given, Table 6,3 below, contains the parameters used
in the calculations,

Table 6.3 Parameters of the square well model for various
gases as found from viscosity (U42)

€/x( X) a(l) c(R) D
N 80 3.36 7.00 0.480
co 91 3.29 7.48 0.4440
H oL 2.57 3.67 0.700
0 P 3.16 6.72 0.470
Ne 101 2.38 3.66 0.650
A 167 2.98 5.8l 0.510
CH 174 3.35 6.57 0,510
lie 232 1.90 2.6l 0.720
Air 87 3.30 6.88 0.480

The poor agreement between the experimental and calculated AX

is not surprising since we did not use thermal conductivity
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parameters, Fig. (6.lt). Holleran and Hulburt (42) noted that
different sets of parameters for the same gases are needed for
each transport coefficient to reproduce experimental data. For
example; for neon they reported that D = 0,65 and D = 0,55
give good results respectively in the case of the viscosity
and thermal diffusion coefficients. In Fig. (6.4) we can
verify the findings of Holleran and Hulburt, If the viscosity
parameter D = 0,51 of argon is replaced by D = 0,72, the param-
eter of helium, we obtain good agreement with experiment. An
interesting feature of the ;g;'data, see table 6.5, is that
all curves of /.:-;’; vs. T¥ reach a minimum with a;<o and T%10
before approaching zero, A curve with this shape, was first
obtained by Stogryn and Hirshfelder (36) and will be discussed
later.

Density correcctions to the transport coefficients of
the Lennard-Jones gas are of particuldr interest in that they
have been previously computed using different theories. They

can be written in the form

3 .
*= oy * — E 3 ()
By = oy (T%) + L (T¥) = b, (TF) + 22;, Iy .
3= DA+ L2 (TN = 5 (T - 2 Ty () 2y
where b.,,(‘l“‘) = W(B‘+T*1§’S ’ 13*=3B/21r6‘3

7 . -
ba (1% = 297 (B¥- 5 5% 7 *5%)
5 9 9

ihe values oI these funcilioviis arc given in tnbles 6.6 and 6.7

and are represented graphically in Kigs. (6.6, 6.7); 1y and
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I, have already been defined in chapter 5, and B,é, and B in
chapter 3. With Figs. (6.6, 6.7) we can compare the relative
contribution of b, and Iy, b, and I, to the respective trans-
port coefficients. The functions by and bg.contain the con-
tributions to Aﬂ: and ,;f'due to correlated velocities and
temperatures.

In Figs. (6,8, 6.9) we compare our results with exper-
iment and with the work of Stogryn and Hirshfelder (S.H.),
Snider and Curtiss (S,.C.), and Hoffman and Curtiss (H.C.). In
Fig. (6.8) the experimental points in circles have been given
by Stogryn and Hirshfelder, the points in squares by Flynn,
Hanks, Lemaire and Ross (43). In Fig. (6.8) the two points in
sguares are values given by Sengers, Bolk and Stigter (Ll).

In Fig. (6.8), the curve of Snider and Curtiss repre-
sents first density corrections due to collisional transfer
contributions only. Hoffman and Curtiss improved the curves
of Snider and Curtiss by adding a correction due to three body
collision contributions, In both wdrks, the theory fails com-
pletely in the low temperature region. Of particular interest
is the resemblance of our curves witﬁ Stogryn and Hirshfelder's
since the first density corrections of these authors include
bound states (dimers) effects. Their work, like ours,
ignored three body collisions.

Stogrvn and Hirnshfelder made a semi-theoretical calcu-
lation of the transport coefficients of a Lennard-Jones gas.

‘hey calculated collisional transfer contributions from
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Enskog's theory and dimers contributions by treating the gas
as a mixture of monatomic and diatomic molecules. From their
work, these authors concluded that: (1) the initial density
dependence of the viscosity is due mainly to collisibnal
transfer contribtions in both the low and high temperature
regions, (2) the initial dénsity dependence of the thermal
conductivity is due mainly to collisional transfer contribu-
tions only in the high temperature regions, while in the low
temperature regions it is the bound molecules (diamers) con-
tributions which predominate.

The theoretical calculations of Snider and Curtiss, as
well as our contradict the first of Stogryn and Hirshfelder
conclusions, but are in complete agreement with the second.
In Fig. (6.9), we note that the @: curve, at high T , follows
Snider and Curtiss's while in the low T regions foilows
Stogryn and Hirshfelder's. - Over the entire temperature range
there is satisfactory agreement with experimental data imply-
ing that multibody collisions do not contribute anpreclably to
the first density correction of the coefficient of thermal
conductivity.

wven il the considerable uncertainty associated with
measurements is talten into consideration (18), our ﬂ;%s. ¥
curve in Fig. (6.8), is low with respect to experimental data.

¥

Fathermore, as T'—wo . our curve approaches zero from above

(positive values) in disagreement with Hoffman and Curtiss's
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results (and experiment)., We conclude, therefore, that
bound states and multibody collisions must contribute sig-

nificantly to the viscosity virial cefficient.
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Table 6.4 The thermal conductivity virial coefficient IBQ(T ) for the square well model

T* Cco 02 Air N2
D=.44 D=.47 D=.48 D=.438
.3 5402, 4327. 4048. 4038.
N 1396. 1118. 1046. 1043.
.5 568.2 454.5 425.0 423.9
.6 294.9 235.7 220.3 219.8
.7 177.6 141.9 132.6 132.3
.8 118.2 94.35 88.15 87.92
.9 84,35 67.30 62.87 62.70
1.0 63.41 50.58 47.23 47.11
1.2 40.03 31.92 29.80 29.72
1.4 27.99 22.31 20.83 20.77
1.6 20.97 16.72 15.61 15.57
1.8 16.50 13.17 12.29 12,26
2.0 13.47 10.76 10.04 10.02
3.0 6.756 5.426 5.072 5.057
4,0 4.462 3.609 3.379 3.368
5.0 3.352 2.732 2.562 2,553
6.0 2.709 2.223 2.088 2.081
7.0 2,291 1.893 1.781 1.775
8.0 1.999 1.663 1.567 1.561
9.0 1.784 1.493 1.409 1.403
10.0 1.620 1.363 1.288 1.283
20.0 . 9491 .8341 .7952 .7913
30.0 . 7480 .6753 .6473 .6438
40.0 .6508 .5985 5758 .5725
50.0 .5934 .5531 5336 .5304
100.0 .4802 .4636 L4502 L4472

gLl



Table 6.4 (Continued)

CH )
* A 4 Ne H2 He
T D=.51 De=.51 D=.65 D=.70 D=.72
.3 3275. 3284, 1319. 954.4 839.2
A 845.5 847.7 338.6 244,3 214.6
.5 343.3 344,2 136.6 98.17 86.17
.6 177.8 178.3 70.33 50.31 44,16
.7 106.9 107.2 42.05 29,96 26.32
.8 71.03 71.20 27.80 19.74 17.37
.9 * 50.63 50.75 19.75 13.98 12.34
1.0 38.03 38,11 14.80 10,46 9.261
1.2 23.98 24,02 9.329 6.579 5.884
1.4 16.77 16,79 6.548 4,621 4.186
1.6 12,57 12.59 4,947 3.499 3.217
1.8 9,912 9.918 3.940 2,798 2.613
2.0 8.111 8.111 3.264 2.330 2.210
3.0 4.132 4.122 1.794 1.324 1.350
4.0 2.782 2.768 1.306 . 9949 1,071
5.0 2.131 2,115 1.074 .8394 .9393
6.0 1.755 1.737 . 9402 .7504 .8643
7.0 1.510 1.493 .8540 .6931 .8161
8.0 1.340 1.322 .7939 .6532 .7825
9.0 1.215 1.196 L7497 .6239 .7578
10.0 1.118 1.099 .7159 .6014 .7389
20.0 .7268 .7066 .5775 .5091 .6611
30.0 .6092 .5887 .5356 .4810 .6372
40.0 .5523 .5316 .5152 4672 .6254
50.0 .5186 .4979 .5031 .4589 .6184
100.0 4522 4312 .4789 4425 .6043

6L
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Table 6.3 The viscosity virial coefficient 4’@('1‘ ) for the square well model

* co o2 Air N2
T D=.440 D=.470 D=.480 D=.480
.3 605.5 484.8 453.5 452 .4
4 179.7 143.7 134.3 134.0
.5 80.65 64.37 60.15 60.00
.6 45.11 35.94 33.57 33.48
.7 28.82 22.92 21.39 21.34
.8 20.08 15.95 14.88 14.84
.9 14.87 11.79 10.99 10.96
1.0 11.50 9.106 8.485 8.462
1.2 7.550 5.957 5.545 5.530
1.4 5.384 4,236 3.939 3.929
1.0 4.059 3.184 2.959 2.951
1.8 3.183 2.490 2.311 2.305
2.0 2.570 2.005 1.860 1.855
3.0 1.150 0.8849 0.8168 0.8144
4.0 0.6512 0.4940 0.4537 0.4523
5.0 0.4157 0.3105 0.2837 0.2827
6.0 0.2854 0.2097 0.1903 0.1897
7.0 0.2057 0.1483 0.1337 0.1332
8.0 0.1535 0.1084 0.09693 0. 09652
9.0 0.1174 0.08098 0.07176 0.07143
10.0 0.09154 0.06147 0.05387 0.05360
20.0 0.01027 0.02005 ~-0.00003422 -0.0001057
30.0 -0.002566 -0.006299 -0.007196 -0.007227
40.0 ~0.005874 -0.007931 ~-0.008410 -0.008427
50.0 -0.006761 -0.008019 -0.008302 -0.008312
100.0 -0.005760 -0.005944 -0.005970 -0.005971

02l



Table 6.5 (Continued).
. Ar Ty Ne "2 Be
T D=.510 D=.510 D=.650 D=.700 D=.720
.3 366.8 367.7 147.8 107.3 94,55
4 108.5 108.7 43.43 31.49 27.55
.5 48.49 48.61 19.23 13.91 12,24
.6 27.00 27.08 10.60 7.630 6.710
.7 17.18 17.22 6.667 4.783 4.195
.8 11.92 11.95 4,577 3.269 2.864
.9 8.790 8.814 3.341 2.372 2.075
1.0 6.775 6.793 2.549 1.799 1.571
1.2 4,413 4,425 1.626 1.140 0.9895
1.4 3.124 3.133 1.128 0.7837 0.6787
1.6 2,339 2.346 0.8274 0.5688 0.4909
1.8 1.821 1.827 0.6318 0.4290 0.3686
2.0 1.461 1.465 0.4963 0.3330 0.2844
3.0 0.6309 0.6329 0.1900 0.1193 0.09854
4.0 0.3440 0.3452 0.08829 0.04923 0.03818
5.0 0.2107 0.2115 0.04332 0.01879 0.01213
6.0 0.1380 0.1386 0.02006 0.003573 -0.0007835
7.0 0.09431 0.09474 .0.006839 -=0.004745 ~0.007678
8.0 0.06611 0.06644 ~0.001143 -0.009550 ~0,01157
9.0 0.04699 0.04726 ~0.006159 -0.01240 -0.01380
10.0 0.03352 0.03374 ~0.009391 -0.01409 ~0.01506
20.0 -0.005347 -0.005292 ~0.01454 ~0.01461 -0.01437
30.0 -0.009460 -0.009437 ~0.01236 -0,01180 ~-0.01146
40.0 -0.009574 -0.009563 ~0,01040 -0.009738 -0.009397
50.0 -0,008955 -0,008949 ~0.008915 -0.008254 ~0.007941
100.0 -0,005977 -0.005978 ~0.005151 -0.004670 -0, 004466

et



Table 6.6 The viscosity virial

*
coefficient '/9'1(’1‘ ) for the Lennard-Jones model

* ) 2) 3) 3 ,d) _ S
T I I 1 ;;11 7= Iy Ry B,
0.3 0. 8824 1.434 -1.652 -1.100 40. 82 39.72
0.4  =-0.8403 0.7277 -1.425 -1.538 13.80 12.26
0.5 -0.8083 0.3531 -1.253 -1.708 6.872 6.701
0.6 -0.7829 0.1465 -1.116 -1.752 4,231 2.479
0.7 -0.7619 0.02867 -1.005 -1.738 2.972 1.234
0.8 -0. 7440 0. 03981 -0.9116 -1.616 2.279 0.5840
0.9 -0.7286 -0.07977 -0.8328 -1.641 1.858 0.2170
1.0 -0.7151 -0,1027 -0.7653 -1.583 1.583 0.0000
1.2 -0.6921 -0.1213 -0.6563 -1.470 1.258 - 0.2120
1.4 -6.6731 -0.1228 -0.5731 -1.369 1.078 0.2910
1.6 -0.6570 -0.1176 -0.5082 -1.283 0.9669 - 0.3161
1.8 -0.6430 -0.1102 -0.4565 -1.210 0.8924 - 0.3176
2.0 -0.6306 -0.1023 -0.4144 -1.147 0.8395 - 0.3075
3.0 -0.5842 -0.07037 -0.2819 -0.9365 0.7077 - 0.2595
4.0 -0.5524 -0,05169 -0.2108 -0.8149 0.6508 - 0.1641
5.0 -6.5283 -0,04037 -0.1678 -0.7365 0.6165 - 0.1200
6.0 -0.5090 -0.03292 -0.1400 -0.6819 0.5922 - 0.08970
7.0 -0.4930 -0.02764 -0.1209 -0.6415 0.5733 - 0.06820
8.0 -0.4793 -0,02373 -0.1067 -0.6097 0.5579 - 0.05180
9.0  -0.4674 -0,02077 -0,09551 -0,5837 0.5448 - 0.03890
10.0 -0.4569 -0.01849 -0.08635 -0.5617 0.5334 0.02830
20.0  -0.3913 -0.009079 -0.04104 -0.4414 0.4641 0.02270
30.0  -0.3562 -0.006126 -0.02678 -0.3891 0.4268 0.03770
40.0 -0.3327 -0.004763 -0.02094 -0.3584 0.4015 0.04310
50.0  -0.3154 -0.003805 -0.01766 -0.3369 0.3826 0.04570
100.0  -0,2664 - 0.001633 -0.009006 -0.2770 0.3280 0.05100

c2cl
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Table 6.7 The thermal conductivity virial coefficient 4Q(T ) for the Lennard-Jones model

*

(1)

(2) (3) 2
T IK Ih Ix 31,n IK bx Bk
0.3 0.3961 0.3070 -3.003 .7334 -1.567 203.6 202.0
0.4 0.4739 0.5965 - -2.427 1.025 - .3320 59.67 59.34
0.5 0.519 0.6831 -1.975 1.139 .3665 26.71 27.08
0.6 0.5483 0.6840 -1.629 1.168 7713 15.02 15.79
0.7 0.5677 0.6504 -1.363 1,159 1.014 9.727 10.74
0.8 0.5810 0.6044 -1.154 1.077 1.108 6.932 8.040
0.9 0.5904 0.5559 -0.9862 1.094 1.254 5.290 6.544
1.0 0.5971 0.5092 -0.8496 1.055 1.312 4,249 5.561
1.2 0.6051 0.4265 -0.6450 . 9800 1.367 3.054 4.421
1.4 0.6089 0.3593 -0.5054 .9127 1.375 2.422 3.797
1.6 0.6101 0.3056 -0.4090 .8554 1.362 2,046 - 3.408
1.8 0.6099 0.2626 -0.3408 .8067 1.338 1.803 3.141
2,0 0.6086 0.2278 -0,2903 . 7647 1.311 1.636 2.947
3.0 0.5965 0.1257 -0.1485 .6264 1.200 1.256 2.456
4.0 0.5823 0.07976 -0.07754 .5433 1.128 1.117 2,245
5.0 0.5690 0.05505 -0,04538 .4910 1.070 1.042 2.112
6.0 0.5569 0.04033 ~0.03447 .4546 1.017 . 9940 2,011
7.0 0.5460 0.03099 -0.03188 4277 .9728 . 9587 1.931
8.0 0.5362 0.02467 -0.03097 .4065 .9364 .9310 1.867
9.0 0.5272 0.02009 -0.02931 .3891 .9071 .9082 1.815
10.0 0.5190 0.01660 -0.02643 .3745 .8837 .8888 1.772
20.0 0.4628 0.004668 -0,005321 .2943 . 7565 .7752 1.532
30.0 0.4294 0.002051 ~-0.004300 .2594 .6865 . 7149 - 1,401
40.0 0.4060 0.0007090 -0.003400 .2389 .6422 .6740 1.316
"~ 50.0 0.3882 0.0005198 ~-0.007920 .2246 . 6054 .6433 1.249
100.0 0.3355 0.0004298 -0,001280 .1847 .5193 .3539 1.073

£cl
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9. APPENDIX A

To prove the result in Eq. (L.2) we use an identity

derived by Hoffman and Curtiss (21) to operate on v,.r

1».'3— .(!""?') = ¥ped (¥p.2) - 2 9y o4 (¥,ex)
r ir mdr J¥s
= !uo (_Y_uc_g) - g ‘Qz '-I_—{-’-l-:
mJr

3_;4‘),2 = %(V.z - vl .%r' (¥y.r))

..9.) = (m/u_k'l’);é Y
Y= 9% - Q/xrT

p = !'-.;_ (¥r.2')
!

We obtain, upon substitution, the desired expression for

%(ﬂz given in iq. (Lh.2).
I. .
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10. APPENDIX B

We want to calculate the coefficients a,, a,, c,, C
and cy in iq. (4.39). From the properties of Dirac's delta
function we can see that w.# 0 only at z = 0, 2./2, 2zo. Let
us specifically calculate wo, at z =€, zo0/2 +€, z,+€ and then

take the limit as € —»0. UWe find

I

a, fﬁz §(z) f&z ( (8'% (¥t.pt=v.r)) - HA/xT )
z

My rt-g.r)® + 88/t

After taking the limit as € —0 and using conservation argu-

ments we obtain

h \
a, =y (2'.c -Lg)=wmzuﬂ+eﬂwpwﬂ#)-rw&-&ﬁ

Using the same arguments employed to derive this expression
we find that a, = a, = ¢, = c3. For c, we obtain instead

2=119+€

c, dz &(z- zo/2) = ¥'(¥'.r'=-y.7)

2
X»2o-€
2

from which with Eq. (4.30) we find :

¢, = -2¥' (¥.a) = -2¢' (a(¥1*+ €/kT) - N*1*)%
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